
AD-A252 405 rATiON PAGt v____________
11111 WI IIIII~I horIerrspns. nluin tetieo rovtswtn iratruckions. ssro" in stig daaue s ahrnand 111111. IN 1ihiiihj11 111i 111111111. Send coammwis regardng thsburdenestimate or anwy other asped of this cNecnof orn a lidon. mdudg

hsjgg Diectorate for infarmation Openations and Reparts. 1215 Jsffeson Dam isgIhway. Staia 1204. Arlington. V
2M.0 of Managamnent and Buidget. Washington. DC 2050M.

1. AGENCY USE (Leave 12 EORT 3.REPORT TYPE AND DATES

I Final: 11 May 1992 to 01 Jun 1993
4. TITLE AND 5. FUNDING

Validation Summary Report:Alenia Aeritalia & Selenia S.p.A, DACS
VAXNVMS to 80x86 PM MARA Ada Cross Compiler, Version 4.6, MicroVAX
4000/200 (Host) to MARA (Target), 920503S1.1 1259

6.

National Institute of Standards and Technology
Gaithersburg, MD
USA
7. PERFORMING ORGANIZATION NAME(S) AND S. PERFORMING

National Institute of Standards and Technology ORGANIZATION
National Computer Systems Laboratory NIST92ALE5O5_1_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA
9. SPONSORINGMONITORING AGENCY NAME(S) AND 10. SPONSORINGIMONITORING

Ada Joint Program Office AGENCY

United States Department of Defense wow
Pentagon, RM 3E 114 DTIC
Washington, D.C. 20301-3081 -
11. SUPPLEMENTARY

jut-O 11992011111

1 2a. DISTRIBUTIONAVAILABILITY A 12b. DISTRIBUTION
Approved for public release; distribution unlimited.

13. (Maximm 200

Alenia Aeritalia & Selenia S.p.A. DACS VAXNVMS to 80x86 PM MARA Ada Cross Compiler, Version 4.6,
MicroVAX 4000/200 (Host) to MARA (Target), ACVC 1.11.

92-17186

92 ' 1

14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.____PRICE__
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/vllL-STD-1815A, 1.PRC

17. SECURITY is8. SECURITY 19. SECURITY 20.LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED________
NSN Standard Forni 296, (Rev. 2-69)

Preeailbed by ANSI SW.

AVF Control Number: NIST92ALE505_1_1.11
DATE COMPLETED

BEFORE ON-SITE: 92-05-02
AFTER ON-SITE: 92-05-11
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920509S1. 11259
Alenia Aeritalia & Selenia S.p.A

DACS VAX/VMS to 80x86 PM MARA Ada Cross Compiler, Version 4.6
MicroVAX 4000/200 => MARA

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Accesion For
NTIS GRA&I
DTIC TAB Ll
Ullan;louice1

D i s t ; i b :, t i o ,. --- --

Dit Av,,; o
Dist

Ai-1 _

AVF Control Number: NIST92ALE505_1_1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on May 09, 1992.

Compiler Name and Version: DACS VAX/VMS to 80x86 PM MARA Ada
Cross Compiler, Version 4.6

Host Computer System: MicroVAX 4000/200 running VAX/VMS,
Version 5.4

Target Computer System: MARA (Alenia computer based on INTEL
80286 running Alenia Operating
System, Version 8.6 System)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920509S1.11259 is awarded to Alenia Aeritalia & Selenia S.p.A.
This certificate expires on [the re-RE-revised Common Expiration
Date: 2 years post ANSI/MIL-STD-1815B standardization].

This report has been reviewed and is approved.

Ada Validation il4tyQ Ada V idation ility
Dr. David K. Je ersArnold son
Chief, Information Systems Manager, Softwa e Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

~ Ada Val a i rganization Ada Joint Program Office

Direct r, pter & Software Dr. John Solomond
Engineering vision Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

NIST92T E505_1.1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: Alenia Aeritalia & Selenia S.p.A

!Certificate Awardee: Alenia Aeritalia & Selenia S.p.A

,Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS VAX/VMS to 80x86 PM MARA Ada
Cross Compiler, Version 4.6

Host Computer System: MACR9VAX 4000/200 running VAX/VMS,
Version 5.4

Target Computer System: MARA (Alenia computer based on INTEL
80286 running Alenia Operating
System, Version 8.6 System)

Declaratiok:

I, the unders ned, declare that I have no knowledge of deliberate
devia f the Ada Language Standard ANSI/MIL-STD-1815A ISO
8 Z-1 in h6 implementation listed above.

Customer Sign ure Date
Company eni Aeritalia & Selenia S.p.A

Certi icate wardee Signature Date
Company Alenia Aeritalia & Selenia S.p.A
Title: Director

IA

TABLE OF CONTENTS

CHAPTER 1 .. -

INTRODUCTION...... 1-1
1.1 USE OF THIS VALIDATION SUMMARY REPORT i-i
1.2 REFERENCES i-i
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 0. 2-1

IMPLEMENTATION DEPENDENCIES 2-1
2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3.............. 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A......... A-i
MACRO PARAMETERS A-I

APPENDIX B................. B-i
COMPILATION SYSTEM OPTIONS...... B-I
LINKER OPTIONS B-2

APPENDIX C C-I
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capabilitv User's Guide, 21 June
1989.

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
ame identifies the class to which it belongs. Class A, C, D, and
tests are executable. Class B and class L tests are expected to

pr duce errors at compile time and link time, respectively.

The xecutable tests are written in a self-checking manner and
produe a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose, The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and (UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certification Office
(AJPO) system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual,
published as ANSI/MIL-STD-1815A-1983 and ISO
8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

1-4

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BDIB06A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

2-1

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 TESTS) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is 1RUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

2-2

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The 19 tests listed in the following table are not applicable
because the given file operations are supported for the given
combination of mode and file access method.

Test File Operation Mode File Access Method
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECTIO
CE2102N OPEN INFILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUTFILE SEQUENTIAL IO
CE2102Q RESET OUT FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUTFILE DIRECT IO
CE2102T OPEN IN FILE DIRECT I
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUTFILE DIRECT IO
CE3102F RESET Any Mode TEXT I
CE3102G DELETE TEXT IO
CE3102I CREATE OUT FILE TEXTIO
CE3102J OPEN IN FILE TEXTIO
CE3102K OPEN OUT FILE TEXTIO
CE3109A CREATE INFILE TEXT IO

The 2 tests listed in the following table check the given file
cperations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL_10
CE2105B CREATE IN-FILE DIRECTIO

The following 15 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the
same external file; USEERROR is raised when this association is
attempted.

CE2107A..B CE2107E..G CD2110B CE2110D CE2111D
CE2111H CE3111A..B CE3111D..E CE3114B CE3115A

CE2107C..D (2 tests), CE2107H, and CE2107L apply function NAME to
temporary sequential, direct, and text files in an attempt to
associate multiple internal files with the same external file;
USEERROR is raised because temporary files have no name.

2-3

CE2108B, CE2108D, and CE3112B use the names of temporary
sequential, direct, and text files that were created in other tests
in order to check that the temporary files are not accessible after
the completion of those tests; for this implementation, temporary
files have no name.

CE2203A checks that WRITE raises USEERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

EE2401D uses an instantiation of DIRECT 10 with an unconstrained
array type; for this implementation, the maximum element size of
the array type exceeds the implementation limit of 32Kbytes and so
USEERROR is raised.

CE2403A checks that WRITE raises USEERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3304A checks that SET LINELENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 68 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AO1A B61001C B61001F B61001H B61001I B61001N
B61001R B61001W B67001H B83A07A B83A07B B83AO7C B83E01C
B83E01D B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B910021
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA11OIB BC1109A BCI109C
BC109D BC1202A BC1202F BC1202G BE2210A BE2413A

2-4

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Dr. Nicola Botta
Alenia Aeritalia & Selenia S.p.A

Via Tiburtina km. 12,4
00131 Roma, Italy

Telephone ++39 6 41972520
Telex 613690 / 616180 Alroma I

Fax ++39 6 4131452

For sales information about this Ada implementation, contact:

Dr. Renato Ciabattoni
Alenia Aeritalia & Selenia S.p.A

Via Tiburtina km. 12,4
00131 Roma, Italy

Telephone ++39 6 41973277
Telex 613690 / 616180 Alroma I

Fax ++39 6 4131452

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro9O].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1). All

3-1

tests passed, except those that are listed in sections 2.1 and 2.2

(counted in items b and f, below).

a) Total Number of Applicable Tests 3792

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 283
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 283 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

Communications between the VAX, host computer system, and the MARA,
target computer system, is done via Ethernet link using TCP/IP
protocols, and two Alenia proprietary communications software
programs: TOP and MJC. TOP is used to initialize the target. MJC
is used to load the executable module(s) and to capture the
execution results.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

For B tests, E tests, CZ, and notapplicable tests:
/LIST /NOSAVESOURCE

For all other tests:

/NOSAVESOURCE

3-2

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in (UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAX IN LEN 126 -- Value of V

$BIGID1 (1..V-1 => 'A', V => '1')

SBIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (l..V-1-V/2 => 'A')

$BIGID4 (l..V/2 => 'A') & '4' & (1..V-1-V/2 => 'A')

$BIGINT LIT (l..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (I..V/2 => 'A') & '"'

SBIGSTRING2 '"' & (l..V-l-V/2 => 'A') & '1' &

SBLANKS (1..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "Ill:"

$MAXLENREALBASED LITERAL
"16:" & (l..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL "' & (1..V-2 => 'A') & "'

A-1

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

ACC SIZE :32
ALIGNMENT :1
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 1048-576
DEFAULT STOR UNIT : 16
DEFAULTSYS NAME : IAPX286
DELTA DOC : 2#1.01E-31
ENTRY ADDRESS : (140,0)
ENTRY ADDRESS1 : (141,0)
ENTRY ADDRESS2 : (142,0)
FIELD LAST : 67
FILETERMINATOR : ASCII.CR & ASCII.LF &

ASCII.FF
FIXED NAME : NO SUCH FIXED TYPE
FLOAT NAME : SHORTSHORTFLOAT
FORM STRING : ""
FORMSTRING2

"CANNOT RESTRICT FILE CAPACITY"
GREATER THAN DURATION : 75 000.0
GREATERTHANDURATION BASE LAST : 131 073.0
GREATER-THAN-FLOAT BASE LAST : 16#l.O#E+32
GREATER THANFLOAT SAFE LARGE : 16#5.FFFF_FO#E+31
GREATER THAN SHORT-FLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 7
ILLEGAL EXTERNAL FILE NAME1 : ILL-FILE
ILLEGALEXTERNALFILENAME2

THISFILENAMEISTOOLONGFORMYSYSTEM
INAPPROPRIATE LINELENGTH : -1
INAPPROPRIATE PAGELENGTH : -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGER FIRST : -32768
INTEGER LAST : 32767
INTEGER LAST PLUS 1 : 32768
INTERFACE LANGUAGE : ASM86
LESS THAN DURATION : -75 000.0
LESS THANDURATION BASE-FIRST : -131 073.0
LINE TERMINATOR : ASCII.CR & ASCII.LF
LOW PRIORITY :0
MACHINECODESTATEMENT

MACHINEINSTRUCTION' (NONE, m_RETN);
MACHINECODE TYPE : REGISTERTYPE

A-2

MANTISSA DOC : 31
MAX DIGITS : 15
MAXINT : 2147483647
MAXINT PLUS_1 : 2147483648
MIN INT : -2147483648
NAME : NO SUCH TYPEAVAILABLE
NAME LIST : IAPX286
NAMESPECIFICATIONi : :FHS:MARALAB/X2120A
NAMESPECIFICATION2 : :FMS:MARALAB/X2120B
NAME SPECIFICATION3 : :FMS:MARALAB/X3119A
NEG BASED INT : 16#FFFFFFFF#
NEWMEM SIZE : 1 048 576
NEW STOR UNIT : 16
NEW SYS NAME : IAPX286
PAGE TERMINATOR : ASCII.FF
RECORD DEFINITION : RECORD NULL;END RECORD;
RECORD NAME : NO SUCHMACHINECODETYPE
TASK SIZE : 16
TASK STORAGESIZE : 1024
TICK : 0.000 000 125
VARIABLE ADDRESS : (16#0#,16#3C#)
VARIABLE ADDRESS1 : (16#41,16#3C#)
VARIABLE ADDRESS2 : (16#81, 16#3C#)
YOURPRAGMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

QUALIFIER DESCRIPTION REFERENCES

/AUTO INLINE Specifies whether local subprograms 5.1.1
/NOAUTOINLINE should be inline expanded.

/CHECK Controls run-time checks. 5.1.2
/NOCHECK

/CONFIGURATIONFILE Specifies the configuration file 5.1.3
used by the compiler.

/DEBUG Includes symbolic debugging 5.1.4
/NODEBUG information in program Library.

Does not include symbolic
information.

/EXCEPTIONTABLES Includes/excludes exception handler 5.1.15
/NOEXCEPTIONTABLES tables from the generated code.

/FIXPOINT ROUNDING Generates fixed point rounding code. 5.1.6
/NOFIXPOINTROUNDING Avoids fixed point rounding code.

/FLOAT ALLOWED Flags generation of float instructions 5.1.7
/NOFLOAT_ALLOWED as error if selected.

/LIBRARY Specifies program library used. 5.1.8

/LIST Writes a source listing on the list 5.1.9
/NOLIST file.

/OPTIMIZE Specifies compiler optimization. 5.1.10
/NOOPTIMIZE

/PROGESS Displays compiler progress. 5.1.11
/NOPROGRESS

B-1

/SAVE SOURCE copies source to program library. 5.1.12
/NOSAVE SOURCE

/TARGET DEBUG Includes Intel debug information. 5.1.5
/NOTARGETDEBUG Does not include Intel debug information.

/XREF Creates a cross reference listing. 5.1.13
/NOXREF

/UNIT Assigns a specific unit number to the 5.1.14
compilation (must be free and
in a sublibrary).

B-2

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation
and not to this report.

Linker Configuration Qualifiers

QUALIFIER DESCRIPTION REFERENCE

/DEBUG Links an application for use with 6.5.6
/NODEBUG the Cross Debugger.

/LIBRARY The library used in the link. 6.5.2

/LOG Specifies creation of a log file. 6.5.4
/NOLOG

/OPTIONS Specifies target link options. 6.5.1

/SEARCHLIB Target libraries or object modules 6.1.4
to include in target link

/ROOT EXTRACT Using non-DDC-I units in the root 6.5.5
/NOROOT EXTRACT library

/SELECTIVELINK Removes uncalled code from final 6.5.3
program.

/STOPBEFORELINK Performs Ada prelink only. 6.1.5

/OFD= <object file Default may be set to the logical 14.3
directory > name "OFD:". The name of the directory

to contain object files.

/AUTOCLUSTER Auto clusterization is active, if this 14.3
qualifier is set.

/CLUSTER= <duster Takes cluster information from file 14.3
Moe> specified.

IOPTIMIZE Assures that intra-cluster CALLs are 14.3
optimized. Far CALLs are substituted for
PUSH CS, near CALL sequences. Returns
remain far.

B-3

/PROCESSOR ASS= Takes information about cluster position 14.3
< proc.assign file > on processors into account, when elaborating.

/INTERFACED= < file> The file or library specified will be 14.3
added to the link command. An alternative
to this qualifier is to use ISEARCHLIB (see above).

/RELINK- The file is supposed to contain lines 14.3
< relinkrde > describing units that have been recompiled

(under the same unit numbers).

/PREIJNK Activates Ada prelink. APFX, Part U, 1.1.1

lINK Enables to obtain an APFX, Part H, 1.1.1
executable program (.LTL)
through a unique command in which
appropriate qualifiers specify (see
[User's Guide]) the parameters to be passed
to the various tools involved in the
generation.

/TEMPLATE [= Allows to specify which program architecture APFX, Part U1, 1.1.2.1
< identifier >] in the < graph > file specified by 'ada'_graph,

is required to generate an executable program.

/MAP It is necessary to create the APFX, Part U, 1.1.2.2
/NOMAP (default) map(< main> .MGA) of the program to be generated.

Run-Time System Configuration Qualifiers

QUALIFIER DESCRIPTION REFERENCE

/LTSTACK SIZE Library task default stack size 7.2.4

ILT_SEGMENTSIZE Library task default segment size 7.2.5

/MPSTACKSIZE Main program stack size 7.2.6

IMPSEGMENTSIZE Main program segment size 7.2.7

/PRIORITIY Default task priority 7.2.1

frASK STORAGESIZE Tasks default storage size 7.2.8

B-4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas, to certain
machine-dependent convention- as mentioned in Chapter 13 of the Ada Standard, and to certain allowed restrictions
on representation clauses. The implementation-dependent characteristics of this Ada implementation, as described
in this Appendix, are provided by the customer. Unless specifically noted otherwise, references in this Appendix
are to compiler documentation and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type SHORT INTEGER is range -128 .. 127;

type INTEGER is range -32768 .. 32767;

type LONG INTEGER is range -2147483648 .. 2_147_483_647;

type FLOAT is digits 6
range -16#0.FFFF FF#E32 .. 16#0.FFFFFF#E32;

type LONGFLOAT is digits 15
range -16#0.FFFF FFFF FFF_F8hE256 .. 16#0.FFFF FFFFFFFFFSIE256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131._071.0;

end STANDARD;

C-I

APPENDIX F IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-8OX86" as required in
Appendix F of the Ada Reference Manual (ANSIIMIL-STD-1815A).

A. Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

1. Pragma INTERFACESPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters that are
invalid in Ada subprogram identifiers. This pragma must be used in conjunction with pragma
INTERFACE, i.e., pragma INTERFACE must be specified f-- 'he Ada subprogram name prior to using
pragma INTERFACESPELLING.

The pragma has the format:

pragma INTERFACE SPELLING (subprogram name, sLiAg literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string literal
is the exact spelling of the interfaced subprogram in its native language. This pragma is only required
when the subprogram name contains invalid characters for Ada identifiers.

Example:

function RTSGetDataSegment return Integer;

pragma INTERFACE (ASM86, RTS GetDataSegment);
pragma INTERFACESPELLING (RTSGetDataSegment,

"R1SMGS?GetDataSegment");

The string literal may be appended 'NEAR (or 'FAR) to specify a particular method of call. The default
is 'FAR. This suffix should only be used, when the called routines require a near call (writing 'FAR is
however harmless). If 'NEAR is added, the routine must be in the same segment as the caller.

User's Guide
Implementation-Dependent Characteristics

2. Pragma LT SEGMENT SIZE

This pragma sets the size of a library task stack segment.

The pragma has the format

pragma LT_SEGMENT_SIZE (T, N);

where T denotes either a task object or task type and N designates the size of the library task stack
segment in words.

The library task's stack segment defaults to the size of the library task stack. The size of the library task

stack is normally specified via the representation clause (note that T must be a task type)

for T'STORAGE_SIZE use N;

The size of the library task stack segment determines how many tasks can be created which are nested
within the library task. All tasks created within a library task will have their stacks allocated from the
same segment as the library task stack. Thus, pragma LTSEGMENTSIZE must be specified to reserve
space within the library task stack segment so that nested tasks' stacks may be allocated (see section 7).

The following restrictions are places on the use of LT_-SEGMENT_SIZE:

1. It must be used only for library tasks.

2. It must be placed immediately after the task object or type name declaration.

3. The library task stack segment size (N) must be greater than or equal to the library task
stack size.

3. Pragma EXTERNAL-NAME

a. Function

The pragma EXTERNAL.NAME is designed to make permanent Ada objects and subprograms externally
available using names supplied by the user.

User's Guide
Implementation-Dependent Characteristics

b. Format

The format of the pragma is:

pragma EO RNAL_NAME(<ada.entity>,<extemal name>)

where <ada-entity> should be the name of:

a permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only,

a constant object, i.e. an object placed in the constant pool of the compilation unit - please note
that scalar constants are embedded in the code, and composite constants are not always placed in
the constant pool, because the constant is not considered constant by the compiler,

a subprogram name, i.e. a name of a subprogram defined in this compilation unit - please notice
that separate subprogram specifications cannot be used, the code for the subprogram must be
present in the compilation unit code, and where the <external name> is a string specifying the
external name associated the <adaentity>. The <external names> should be unique. Specifying
identical spellings for different <adia_entities> will generate errors at compile and/or link time, and
the responsibility for this is left to the user. Also the user should avoid spellings similar to the
spellings generated by the compiler, e.g. E_xxxxx.yyyy, P._xxxxx, C_xxxxx and other internal
identifications. The target debug type information associated with such external names is the null
type.

c. Restrictions

Objects that are local variables to subprograms or blocks cannot have external names associated. The
entity being made external ("public") must be defined in the compilation unit itself. Attempts to name
entities from other compilation units will be rejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address of the
first byte assigned to the object.

d. Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(1..lO);

type s is
record

len : integer;
val : stringlO;

end record;

User's Guide
Implementation-Dependent Characteristics

globals : a;
const_ : constant stringlO :- "12345678900;

pragma EXTERNAL NAME(globalsa, "GLOBAL S OBJECT");

pragma EXTERNALNAME(consts, -CONST_S-);

procedure handle(...) is

end handle;

pragma EXTERNALNAME (handle, "HANDLEPROC");

end example;

The objects GLOBAL.,S and CONST_S will have associated the names "GLOBAL_SOBJECT" and
"CONSTS". The procedure HANDLE is now also known as "HANDLE_PROC". It is allowable to assign
more than one external name to an Ada entity.

e. Object Layouts

Scalar objects are laid out as described in Chapter 9. For arrays the object is described by the address of
the first element; the array constraint(s) are NOT passed, and therefore it is recommended only to use
arrays with known constraints. Non- discriminated records take a consecutive number of bytes, whereas
discriminated records may contain pointers to the heap. Such complex objects should be made externally
visible, only if the user has thorough knowledge about the layout.

f. Parameter Passing

The following section describes briefly the fundamentals regarding parameter passing in connection with
Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects are always passed by value. For OUT or IN OUT scalars, code is generated to move the
modified scalar to its destination. In this case the stack space for parameters is not removed by the
procedure itself, but by the caller.

Composite objects are passed by reference. Records are passed via the address of the first byte of the
record. Constrained arrays are passed via the address of the first byte (plus a bitoffset when a packed
array). Unconstrained arrays are passed as constrained arrays plus a pointer to the constraints for each
index in the array. These constraints consist of lower and upper bounds, plus the size in words or bits of
each element depending if the value is positive or negative respectively. The user should study an
appropriate disassembler listing to thoroughly understand the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers/float registers only; composite results leave an address in some registers and the rest, if any, are
placed on the stack top. The stack still contains the parameters in this case (since the function result is
likely to be on the stack), so the caller must restore the stack pointer to a suitable value, when the function
call is dealt with. Again, disassemblies may guide the user to see how a particular function call is to be
handled.

User's Guide
ImPlementation-Dependent Qiaracteristics;

B. Implementation-Dependent Attributes

No implemenaton-dependent attributes are defined.

C. Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real Address Mode and DACS-8028PM
systems are identical.

Below is package system for DACS-80x86.f

package System is

type Word is new Integer;type DWord is now Long .integer;

typ UnsignedWord is range 0..65535;
for Unsigned~ord'SIZZ us* 16;

typ byte is range 0.-255;
for bYt*'SXzz use 8;

subtype Segment Id is Unsignedword;

type Address is
record

offset Onsignedwerd;
segment Segmentld;

and record;

subtype Priority is integer range 0.-7;
type Name is (iAPX296);

SYSTEM NAME constant Narnse ihPX2O 6;STORAGE UNIT constant :-16;
MEMORY-Piii constant :1 048 576;MIN INT constant :-1 147 463 647-1;MAX-INT constant -2 'f47 483 1947;

MkDIGITS constant :-13; -
MOX MANTISSA constant :-31;
rVINE DELTA constant -2#1.OGE-31;uciC constant :-0.000 000 125;

User's Guide
Implementation-Dependent Characteristics

type Interface language is
(ASM86, P11486, C86, C86 ?EvZRSz,
ASH ACt, PLN ACF, C ACF, C REVERSE AC!,
AskHOCd, PLKHOAd?, C-NOPAd, C-REVZRBRHO*CF);

type Exceptionld is record
unit number : UnsignedWord;
uniqge number : Unsignedword;

end recor'a;

type TaskValue is new Integer;
type AccTaskValue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter Integer;
first TaskValue;
last TaskValue;

end record;

InitSemaphore : constant Semaphore :- Semaphore' (1, 0, 0);
foreign exception : exception;

end System;

D. Representation Clauses

The DACS-80x86-' fully supports the 'SIZE representation for derived types. The representation clauses
that are accepted for non-derived types are described in the following subsections.

1. Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

When using the SIZE attribute for discrete types, the maximum value that can be specified is 16
bits. For DACS-80386PM/80486PM the maximum is 32 bits.

SIZE is only obeyed for discrete types when the type is a part of a composite object, e.g. arrays
or records, for example:

type byte is range 0..255;
for byte'size use 8;

sixteen_bits_allocated : byte; - one word allocated

eight_bit.perelement : array(O..7) of byte; -- four words allocated
type rec is

record
clc2 : byte; - eight bits per ccxpoo

end record;

User's Guide
Implementation-Dependent Characteristics

Using the STORAGESIZE attribute for a collection will set an upper limit on the total size of
objects allocated in this collection. If further allocation is attempted, the exception
STORAGE-ERROR is raised.

When STORAGESIZE is specified in a length clause for a task type, the process stack area will
be of the specified size. The process stack area will be allocated inside the "standard" stack
segment. Note that STORAGE_SIZE may not be specified for a task object.

2. Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of -32767..+32766 (or -
16#7FFF..16#7FFE).

3. Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

- if the component is a record or an unpacked array, it must start on a storage unit boundary (16
bits)

- a record occupies an integral number of storage units (words) (even though a record may have
fields that only define an odd number of bytes)

- a record may take up a maximum of 32K bits

- a component must be specified with its proper size (in bits), regardless of whether the component
is an array or not (Please note that record and unpacked array components take up a number of
bits divisible by 16 (-word size))

if a non-array component has a size which equals or exceeds one storage unit (16 bits) the
component must start on a storage unit boundary, i.e. the component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1) from the beginning of the record, and M the
required number of storage units (1,2,...)

- the elements in an array component should always be wholly contained in one storage unit

- if a component has a size which is less than one storage unit, it must be wholly contained within
a single storage unit:

component at N range X .. Y;

User's Guide
Implementation-Dependent Characteristics

where N is as in previous paragraph, and O <= X <= Y <= 15. Note that for this restriction a
component is not required to start in an integral number of storage units from the beginning of
the record.

If the record type contains components which are not covered by a component clause, they are allocated
consecutively after the component with the value. Allocation of a record component without a
component clause is always aligned on a storage unit boundary. Holes created because of component
clauses are not otherwise utilized by the compiler.

Pragma pack on a record type will attempt to pack the components not already covered by a representation
clause (perhaps none). This packing will begin with the small scalar components and larger components
will follow in the order specified in the record. The packing begins at the first storage unit after the
components with representation clauses.

a. Alignment Clauses

Alignment clauses for records are implemented with the following characteristics:

If the declaration of the record type is done at the outermost level in a library package, any
alignment is accepted.

If the record declaration is done at a given static level higher than the outermost library level, i.e.,
the permanent area), only word alignments are accepted.

Any record object declared at the outermost level in a library package will be aligned according
to the alignment clause specified for the type. Record objects declared elsewhere can only be
aligned on a word boundary. If the record type is associated with a different alignment, an error
message will be issued.

If a record type with an associated alignment clause is used in a composite type, the alignment
is required to be one word; an error message is issued if this is not the case.

E. Implementation-Dependent Names for Implementation Dependent Components

None defined by the compiler.

F. Address Clauses

This section describes the implementation of address clauses and what types of entities may have their
address specified by the user.

User's Guide
Implementation-Dependent Characteristics

1. Objects

Address clauses are supported for scalar and composite objects whose size can be determined at compile
time. The address clause may denote a dynamic value.

G. Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However, if scalar type has
different sizes (packed and unpacked), unchecked conversion between such a type and another type is
accepted if eilher the packed or the unpacked size fits the other type.

User's Guide
Implementation-Dependent Characteristics

EL Machine Code Insertions

The reader should be familiar with the code generation strategy and the 80x86 instruction set to fully
benefit from this section.

As described in chapter 13.8 of the ARM [DoD 83] it is possible to write procedures containing only code

statements using the predefined package MACHINE-CODE. The package MACHINECODE defines the
type MACHINE_INSTRUCTION which, used as a record aggregate, defines a machine code insertion.
The following sections list the type MACHINENSTRUCTION and types on which it depends, give the
restrictions, and show an example of how to use the package MACHINE_CODE.

1. Predefined Types for Machine Code Insertions

The following types are defined for use when making machine code insertions (their type declarations are
given on the following pages):

type opcode.type
type operand_type
type register.type
type segment-register

User's Guide
Implementation-Dependent Charateristics

type machinejnstruction

The type REGISTERTYPE defines registers. The registers SMi describe registers on the floating stack.
(ST is the top of the floating stack).

The type MACHINE-JNSTRUCTIQN is a discriminant record typ with which every kind of instruction
can be described. Symbolic names may be used in the form

nane 'ADDRESS

Restrictions as to symbolic names can be found in section F.8.2.
It should be mentioned that addresses are specified as 80386/80486 addresses. In case of other targets, the
scale factor should be set to "scale_1".

type opcode type 1.
- 8086 instructions:

1 Am, a .AADI aLAN, aALE, I mADC, a ADD, a AND, a-CALL, a CALLN,
a_CBl, 1aCLC, aCLD, aCLI, aCMC, a CP, a CMS, a CWD, a DLL,
a DAB, a .DRC, a OZYV, UmHLT, a IDIV, a-imuL, aIMx, maiUc, amiiT,
aiNTO, a IET, a3A, JAZ, Br33, a 333, a_.YC, a. JCXZ, 333,0
a__JG, a7JG, a. a' aJL, MrmI, *JNAZ, zz325, a 3153, a_3NC,
a_3213, a JNG, m. ..Kz, x OWL, aONLE, aOO a M? a2I, a JNZ,
.00o, a~m, w~JPz, a JP0, aJis, enJZ, aM.: 1m7LW, aLDS,
a _1.38 Ia LRA. - LOC, a LODE, m LOOP, a LOOPE, aL015, a-LOOPNZ,
amLOOPZ,aMOV, aNMOVS, a MOL, a NEG, aMOP, a -NOT, Ma_OR, a OUT,
a POP, a PIPF, a PUSH, a PUSHF,aKCL, a RCR, a ROL, a ROE,
aNIP, wzP, aPIzPNz,=7EET, a NETP, serZTN, a31ETE, aBLEW,
a _SAL, aBLESA, a SL EU a aSE, a 835, UadS, sc ETC. SSTD, a-STI,
aSTOS, a SB, aLTZIT, M7WAIT, aiXCHcr , aILaT, aXO.,

- 8087/80187/80287 Floating Point Processor instructios:

a_FASS, a-rADD, a-FADDD, a FADDP, a-FELD, aFDBSTP, mCS,
aFNCLEX, a-FCOM, a FCOMD, a-FCOIWP, a FCOMD, a ~PO P, a FDECSTP,
a FYDIV, a FD1VD, a IPDIW, a-FDIV, m FDIVND, aFDIVNP *FNEE,
a FIADD, UFi-ADDD, a rICO4, a FICOND, m FICOMP, arFI00iWD, a-FIDIV,
m FIDIVD, =FIDVE, MaFDrvED,vrFiLD, arFILDD, aFLDL, aiPIMUL,

akFiMULD, M FINCSTP,maFNINIT, a-FIST, a ISTD, in ISTP, a-FIETPD,
a FXSTPL, arFISUD, a-FSUID, I FISUBRE, aFISUBRD,aF a-FDD,
a_P1.0CM, a PLDENV, a P1.012 aFPLDLN2, a FLDL22, rFDLT, a FLDPI,
a yLDz, aPLml, mUPHUL, wDYNULD, UPHUuL?, aFNrp, aPPATAiI,
aFPREK, M F? TAN, UFERNDINT, a_FESTOR, a - SAVE, aFBLP 3,L# a-IPSETPM,
aP.SQRT, aFPET, a-FBTD, a-FTCW, aFSTENV, aFS!?, a FBTPD,
aFETSW, a-FTSWAX,a TBUS, a PSUBD, a FEUB?, a tCE aFSUBMD,
aRFSUBRP, a _ TST, MCFWAXT, uFYXAN, oaFXCH, iFXUACT,
aFTL2XP2., aF2XN1,

- 00186/00296/80386 instructions:
- notice that mom imdiate versions of the 8086
- instructions only exist on thome targets
- (mhiftm,rotates,push,iaul,...)

V_BOUND, a CLTS, mUENTEE, MEN, a-LAR, a-LZAVE, a-LQOT,
a _LIDT, a 1.81. a OUTS, a POPA, a-PUSH&, aSQOT, a-SlDT,
aLARPL, a-LLDT, 217LMS, a_7LTE,

-16 bit always...

a SLDT, aSKW, aETE, aVENE, m ViEW,

- the 80386 mpecific instructions:

a BESTA, U-SETAE, mEEZTS, aBSETBE, i.S3TC, aTEW,
aBETG, 3-SETG, aSETL, aBETLE, a SETIL, a UTUhl,
a__EzTNS, USETNUE, auSZTNC, aBSETNE, mUEETNc,
a STMIE, UE3ZTNL, aUBKTNLE, U. BETNO, a-SETNP, 3.UTNS,

User's Guide
Implementation-Dependent Charateristics

*_ SZTNZ, in lTO, a SRTP, unSETPE, in81170, a SZTB,
M:SETZ, m~bsF, XCBSR, mBST, RrBTC, mmt~,
zrETlS, mCLFS, a LOS, a LBS. amOwVzx, s7NOVBX,

LMKOVCRt, xzuMOVDB, 07MOVTRI dESELD, m-SURD,

- the 80387 specific instructions:

uL'UCOM, inFYCOP, aFPUCOPP, a FPIFX, a FStU, mYFCOS,
ML-FSINCOsP

- byte/v ord/duord variants (to be used, when
- not deductible from context):

iADCE, a ADCW, a AMD, a ADDS, a ADOW, in DDOD,
MCANDS, aANDI, a D4, =:EW, mESTD, n:BTCW,
MrSTCD, abTRW, duETP.D, aMSW , auBTSD, a C=W,
in WDE, inCWDW, a CDQ, a aME, a OMW, a OND,

n-mpss, ardm~sw, wUOSD, =7DzCE, ii7DzCW, ur-DUC,
ni'-Vr, *7DVW, 107DVD, SCIDIVE, miDiiW, MIDAID,
aNULE, nIMULW, mIMUID, miINCE, *IrNCW, -_IUCD,
IIES, in INS1, a NliD, NLOOSE, uIOD8W, m7LODSD,
MHOVE, inrOVW, ziNOVD, aMNOVSE, uI4MOVSW, in NOVSD,

inMOVSXE, mIEMOVSxW, 07IEOVZXE, MNMOVzxW, MULE, MIWIW,
in -MULD, m70=B, 5111GW, i-n HUG, a OT, NOTW,

ilNOTD, a ORE, uLORW, in ORD, . OUTB inOUTSV,
*_-OUTSD, d-POW m? OPD, UiPUSUW, aPUSHO), z:RCL,
a_-RCLW, *RicLO, sr-cRE, RcE.w, a-RcRD, in RoLE,
inROLN, zROLD, ACRE, iURORW, iucRORD, ziSALS,
inSALW , inSBALD, inSARB, m-SARW, a BARD, niSiLS,
.iSmLW, inSRLOW, n78HS, a SHR, zrSMWW, in SEES,
inSEEW, m -SEED, a SCAS, a_7SCALSW, xSCASO, inSTOSE,

BC-TOSW, siSTOSD, aBUSEB, 380511B, aiDEBD, =7TESTS,
inTUSTW, in TUBTD, aUXORE, m-XORW, uxEORD, dnOANA,

zOATAw, aDATAD,

- Special 'instructions': i-abel, a reset,

- 8087 temip real load/store andpop: a LOT, m*FSTPT);

pragmas page;
type operand type is nnoe, - no operands

immhediate, - one inumedia to operand
register, - one register operand
address, - one address operand
syatem address, - one 'address operand
name, - CALL nam
register-ijeediate, - two operands

- destination is
- register
- source is imnsdiato

rogiater register, - two register operands
regiator address, - two operands:

- destination is
- register
- source is address

address register, - two oper-ands:
-destination is

-A addre
-source is register

register s1ystem -address, - two operands:
- destination is
- register
- source ia 'address

system naddress _register, - two operands:
- destination is
- 'address

- source is register
address-jammediate, -two operands

- destination is
- address
- source is innediate

system -addressimediate, - two operands:
-- destination is

User's Guide
Implementation-Dependent Characteristics

- *address
- source is imediate

immodtate_register, - only allowed for OUT
- port is iindiate
- source is register

inumdate_i"madiate, - only allowed for

register register imediate, - allowed for IMULimm,
- SRRDiam, 8.Dim

register address imediate, - allowed for XMULimm
register-system address imidate, - allowed for IMULimn
addressrogisterimmdiate, - allowed for 8HRDimm,

- BRLDiDm
system addressregister immediate - allowed for SHRDimn,

- 8Dimm

type register_type is
(AX, CX, DX, BX, SP, SP, 8I, DI, - word regs
AL, CL, DL, BL, AH, CH, DR, 3H, - byte regs
EAX,ECX,EDX,EBX,SP,ZBP,ESI,EDI, - dword regs
ES, CS, SS, DS, rS, GS, - selectors
SXSI, BX_DI, BP SI, BP DI, - 8086/80186/80286

- combinations
ST, ST1, ST2, 6T3, - floating registers

- (stack)
8T4, 8T5, ST6, ST7,
nil);

- the extended registers (FAX .. EDI) plus FS and GS
- are only allowed in 80386 target*

type scale type is (scale_1, scale 2, scale_4, scaleS);

subtype machine-string is string(l..100);

pragma page;
type machlne-instruction (operand-kind : operand type) is

record
opcode : opcodetype;

came operand kind is
when immisaiate ->

immediatel integer; -immediate

when register ->
r_reqiater r register type;
- source and/or destination

when address ->
a aegment : register type;
- source and/or destination
a address base register type;
a-address index register type;
a-address-scale scale_.type;
a-address-offset integer;

when system address ->
asaaddrea: system.address; -destination

when name ->
n_tring machine-string; - CALL destination

when register immediate ->
r i register to register type;
- destination
r_i_iimdiate integer;

-- source

when register register ->
r r register to register type;
-= aestination
r_r register from register-type;

User's Guide
impiementation-Dependern Characteristics

-source

when register address -
r a register to register-typ.;
- Hetination
raseMgment register type;

- source
r a address base register-type;
r 'aaddresm index register type;
r-aaddremmcale Meal. type;
raa7ddremmoffmet. integer;

when addroms register -
a r segme~nt regi ster-type;
-= stination
a r address base rogimter type;
araddremindex register type;
ar-address-scale mOale-type;
a r-addrese~offset integer;
arjiregistei from regisr typo:
-= iource

when register system-addres-
ra aregiiEir to register type;

-=destination
r aa ddress system. addrems;

soM'urce

when system addream register -
a& r address : ystem-address;
- ;diatination
sarrg from :register-type;
- source

when address-immnediate -
a i seg-ent register-type;
- detination
a i address base register type;
ai-address index register7 type;
aiaddrems scale scale type;
a i-addresm-offset integer;
a i immediat integer;

s= ourc*

when system addres mmediate -
aiaddress system addrems;

- :destination
as i imediate integer;
- source

when immediate-register -
i r imediate integer;
- aestination
i-rreqister register-type;
- source

when immediate imdiate -
i i immadia I integer;
- Lumediatel
i i imediate2 integer;
- Isindiat*2

when register register -Immediate -
r r i registerl register-type;
- &estination
r r i roitr2 register type;
- ;ourcel
r r i immediate integer;
- iourc*2

when register address -immediate -
r a i rgister register-type;
- astination

raijsegment register type;

User's Guide
Implementation-Dependent Characteristics

sourcel
r a_ iaddress baso register typo;
ra i-address-index register_type;
r-i-address scale scalotype;
r a i address-offset: integer;
r-a-i-immndi&7e integer;
- sOurCe2

when register system address imediate ->
r a& i register -: rogster type;
-= dis'ination
addrlO system. address;
- sOurcel
ra i immediat integer;
- source2

when address rgisterimmediate ->
a r ± segment register type;
- deatination
a r i address base register type;
a-r-i-address-index : register type;
a-r-i-addrom-s-cale scale type;
a-r--i-address offset: integer;
a-rirgistQr rogiste otype;
- sourcel
a r i immediate : integer;
- ioUrce2

when system addresa regitr_immediate ->
sa r i aadreas : system.adrs;
-- desEination
as r i reqister : regiater type;
- sourcel
a r i imediate : integer;
- siourco2

when others ->
null;

end case;
end record;

end machine-code;

2. Restrictions

Only procedures, and not functions, may contain machine code insertions.

Symbolic names in the form x'ADDRESS can only be used in the following cases:

1. x is an object of scalar type or access type declared as an object, a formal parameter, or
by static renaming.

2. x is an array with static constraints declared as an object (not as a formal parameter or
by renaming).

3. x is a record declared as an object (not a formal parameter or by renaming).

The m.CALL can be used with "name" to call (for) a routine.

Two opcodes to handle labels have been defimed:

User's Guide
Implementation-Dependent Characteristics

m_label: defines a label. The label number must be in the range 1 <= x <= 999 and is put in the
offset field in the first operand of the MACHINE_INSTRUCTION.

m_reset: used to enable use of more than 999 labels. The label number after a mRESET must
be in the range 1<= x <= 999. To avoid errors you must make sure that all used labels
have been defined before a reset, since the reset operation clears all used labels.

All floating instructions have at most one operand which can be any of the following:

- a memory address
- a register or an immediate value
- an entry in the floating stack

3. Examples

The following section contains examples of how to use the machine code insertions and lists the generated
code.

4. Example Using Labels

The following assembler code can be described by machine code insertions as shown:

NOV AX,7
NOV CX,4
CHP AX,CX
JG 1
JE 2
NOV CX, AX

1: ADD AX,CX
2: MOV SS: [P+DI], AX

package exampleMC is

procedure test labels;
pragma inline Ttest labels);

end example MC;

with MACHINE CODE; use MACHIE CODE;
package body-exampleMC is

procedure test labels is

begin

MACHINE INSTRUCTION' (register imediate, mMOV, AX, 7);
MACHINE- INSTRUCTION' (register imediate, 2_MOV, CX, 4);
ACHINE-INSTRUCTION' (register-register, a_CHP, AX, CX);

MACHINE INSTRUCTION' (imediate, MJG, 1);
ACHINE-INSTRUCTION' (immediate, m_JI, 2);
ACHINK-INSTRUCTION' (register register, m MOV, CX, AX);

MACHINZ-INSTRUCTION' (iediate, mlabel, 1);
MACHINE -INSTRUCTION' (register register, m ADD, AX, CX);
MACHINE-INSTRUCTION' (inmediate, m label, 27-;
MACHINE-INSTRUCTION' (address register, M NOV, 88, SP,

DY, scale_1, 0, AX);

User's Guide
Implementation-Dependent Characteristics

end toot labels;

end examplo MC;

5. Advanced Topics

This section describes some of the more intricate details of the workings of the machine code
insertion facility. Special attention is paid to the way the Ada objects are referenced in the machine
code body, and various alternatives are shown.

a. Address Specifications

Package MACHINECODE provides two alternative ways of specifying an address for an instruction.
The first way is referred to as SYSTEM_ADDRESS and the parameter associated this one must be
specified via OBJECT'ADDRESS in the actual MACHINE_CODE insertion. The second way closely
relates to the address oUg which the 80x86 machines employ: an address has the general form

segment: [base+index*scale+offset]

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The default
value NIL for segment, base, and index may be selected (however, if base is NIL, so should index be).
Scale MUST always be specified as scale-1, scale_2, scale_-4, or scale_8. For 16 bit targets, scale-l is
the only legal scale choice. The offset value must be in the range of -32768 .. 32767.

b. Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be referenced by
the machine insertions using the SYSTEMADDRESS or ADDRESS formats explained above.
However, there is a great difference in the way in which they may be specified; whether the procedure
is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEMADDRESS form. This will be dealt with correctly even if the actual values are constants.
Using the ADDRESS form in this context will be the user's responsibility since the user obviously
attempts to address using register values obtained via other machine insertions. It is in general not
possible to load the address of a parameter because an 'address' is a two component structure (selector
and offset), and the only instruction to load an immediate address is the LEA, which will only give the
offset. If coding requires access to addresses like this, one cannot INLINE expand the machine
insertions. Care should be taken with references to objects outside the current block since the code
generator in order to calculate the proper frame value (using the display in each frame) will apply extra
registers. The parameter addresses will, however, be calculated at the entry to the INLINE expanded
routine to minimize this problem. INLINE expanded routines should NOT employ any RET instructions.

User's Guide
Implementation-Dependent Characteristics

Pure procedure machine insertions need to know the layout of the parameters presented to, in this case,
the called procedure. In particular, careful knowledge about the way parameters are passed is required
to achieve a succesful machine procedure. Again there are two alternatives:

The first assumes that the user takes over the responsibility for parameter addressing. With this method,
the SYSTEM_.ADDRESS format does not make sense (since it expects a procedural setup that is not set
up in a machine procedure). The user must code the exit from the procedure and is also responsible for
taking off parameters if so is required. The rules of Ada procedure calls must be followed. The calling
conventions are summarized below.

The second alternative assumes that a specific abstract A-code insertion is present in the beginning and
end of the machine procedure. Abstract A-code insertions are not generally available to an Ada user since
they require extensive knowledge about the compiler intermediate text called abstract A-code. Thus, they
will not be explained further here except for the below use.

These insertions enable the user to setup the procedural frame as expected by Ada and then allow the form
SYSTEM_ADDRESS in accesses to parameters and variables. Again it is required to know the calling
conventions to some extent; mainly to the extent that the access method for variables is clear. A record
is, for example, transferred via its address, so access to record fields must first employ an LES-instruction
and then use ADDRESS form using the read registers.

The insertions to apply in the beginning are:

pragma abstract_acode_insertions(true);
aainstr'(aaCreate-Block,x,y,0,0,0);
aajnstr' (aaEndof declpart,O0,0,0,0);

pragma abstract_acodeinsertions(false);

and at the end.

pragma abstractacode_insertions(true);
aa-instr'(aaExiLtsubprgrm,x,O,x,nl..arg,ni arg); -- (1)
aajinstr'(aa -Setblockjlevel,y- 1,0,0,0,0);

pragma abstract_acode_insertions(false);

where the x value represents the number of words taken by the parameters, and y is the lexical block level
of the machine procedure. However, if the procedure should leave the parameters on the stack (scalar IN
OUT or OUT parameters), then the Exit_subprgrm insertion should read:

aa-instr'(aaExiLsubprgrm,0,0,0,niLarg,nilarg); -- (2)

In this case, the caller moves the updated scalar values from the stack to their destinations after the call.

The NIL_ARG should be defined as:

User's Guide
Implementation-Dependent Characteristics

niLarg : constant := -32768;

WARNING: When using the AAINSTR insertions, great care must be taken to assure that the x and y
values are specified correctly. Failure to do this may lead to unpredictable crashes in compiler pass8.

C. Parameter Transfer

It may be a problem to figure out the correct number of words which the parameters take up on the stack
(the x value). The following is a short description of the transfer method:

INTEGER types take up at least 1 storage unit. 32 bit integer types take up 2 words, and 64 bit integer
types take up 4 words. In 32 bit targets, 16 bit integer types take up 2 words the low word being the
value and the high word being an alignment word. TASKs are b'ansferred as INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or 32 bit
offset value. When 32 bit offset value, the segment value takes up 2 words the high word being the
aligment word. The offset word(s) are the lowest, and the segment word(s) are the highest.

RECORD types are always transferred by address. A record is never a scalar value (so no post-procedure
action is carried out when the record parameter is OUT or IN OUT). The representation is as for
ACCESS types.

ARRAY values are transferred as one or two ACCESS values. If the array is constrained, only the array
data address is transferred in the same manner as an ACCESS value. If the array is unconstrained below,
the data address will be pushed by the address of the constraint. In this case, the two ACCESS values will
NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the addition of an
INTEGER bit offset as the highest word(s):

+H: BIT_OFFSET
+L: DATA_ADDRESS
+0: CONSTRAINTADDRESS - may be missing

The values L and H depend on the presence/absence of the constraint address and the sizes of constraint
and data addresses.

In the two latter cases, the form parameter'address will always yield the address of the data. If access is
required to constraint or bit offset, the instructions must use the ADDRESS form.

User's Guide
Implementation-Dependent Characteristics

d. Example

A small example is shown below (16 bit target):

procedure unsigned-add

(opl in integer;
op2 :in integer;
res out integer);

Notice that machine subprograms cannot be functions.

The parameters take up:

opl : integer : I word
op2 : integer : 1 word
res : integer : 1 word

Total : 3 words

The body of the procedure might then be the following assuming that the procedure is defined at
outermost package level:

procedure unaigned add
(opf in integer;
op2 in integer;
rem out integer) isbegin

pragma abstract acode insertions (true);
aa inmtr' (a Ceate Klock,3,1,0,0.0); - x w 3, y -1aa-instr' (a&"3End of-declpartO,O.O,O,O);

pra-ma abtract aed insertions (fase);

machine instruction' (regiatr -ystm address, a NOV,
AX, opl'adrss); -machine instruction, (regiater sytem addrea, a ADD,
AX, op2'ardros); -machine instruction' (immediate, m WC, 1);

machine -instruction (imdiate, m-1, 5);machine inatruction' (imned4ate, mlabeii);
machine-instruction' (system address register, a-Oy,

esb'addz me, AX);

pragma abstract acode insertions (true);
&a instr'(aa Exfit #uSPrgam,0,O,,nii arq,nil1az);-.. (2)aa-inatr'(aa et Slock level 0, 0.0,0,0); - y-l - 0pra ma abstract a7code insertiona (false);

end unaignedl add; -

A routine of this complexity is a candidate far INLINE expansion. In this case, no changes to the above'machine-instruction' statements are required. Please notice that there is a difference between addressing
record fields when the routine is INLINE and when it is not:

User's Guide
Implementation-Dependent Characteristics

type rec is
record

low : integer,
high : integer;

end record;

procedure add_32 is
(op1 : in integer,
op2 : in integer,
res : out rec);

The parameters take up 1 + I + 2 words - 4 words. The RES parameter will be addressed directly
when INLINE expanded, i.e. it is possible to write:

machine-instruction'(system-address_.register, mMOV,
res'address, AX);

This would, in the not INLINED version, be the same as updating that place on the stack where the
address of RES is placed. In this case, the insertion must read:

machineinsruction'(registersystem-address, mjLES,
SI, res'address);

-- LES SI,[BP+...]
machineinstruction'(address..register, m._MOV,

ES, SI, nil, scalej, 0, AX);
-- MOV ES:[SI+O],AX

As may be seen, great care must be taken to ensure correct machine code insertions. A help could be to
first write the routine in Ada, then disassemble to see the involved addressings, and finally write the
machine procedure using the collected knowledge.

Please notice that INLINED machine insertions also generate code for the procedure itself. This code
will be removed when the /NOCHECK qualifier is applied to the compilation. Also not INLINED
procedures using the AAINSTR insertion, which is explained above, will automatically get a
storage-check call (as do all Ada subprograms). On top of that, 8 bytes are set aside in the created frame,
which may freely be used by the routine as temporary space. The 8 bytes are located just below the
display vector of the frame (from SP and up). The storage-check call will not be generated when the
compiler is invoked with /NOCHECK.

The user also has the option NOT to create any blocks at all, but then he should be certain that the return
from the routine is made in the proper way (use the RET? instruction (return and pop) or the RET). Again
it will help first to do an Ada version and see what the compiler expects to be done.

Symbolic fixups are possible in certain instructions. With these you may build 'symbolic' instructions byte
for byte. The instructions involved all require the operand type NAME (like used with CALL), and the
interpretation is the following:

User's Guide
Implementation-Dependent Characteristics

(name, mDATAD, "MYNAME") a full virtual address (offset and selector) of the symbol
MYNAME (no additional offset is possible).

(name, mDATAW, "MYNAME") the offset part of the symbol MYNAME (no additional
offset is possible).

(name, mDATAB, "MYNAME") the selector value of symbol MYNAME

In inlined machine instructions it may be a problem to obtain the address of a parameter (rather than the
value). The LEA instruction may be used to get the offset part, but now the following form allows a way
to load a selector value as well:

(systemaddress, LES, param'address) ES is loaded with the selector of PARAM. If this selector
was e.g. SS, it would be pushed and popped into ES.
LES may be substituted for LFS and LGS for 80386.

APPENDIX F
PART II -

TARGZT-
DEIPNDENT

CHARACTERSTICS

1 Ad& Linker - [LIN]

[UserGuide] lists the capabilities of Ada linker with respect to Ada
programs programming aspects and to language definitions meaning.
This section integrates DDC Ada Compiler System User Guide with
respect to Ada linker use to generate Ada programs for Alenia
computers. The reader is expected to be familiar with the terminology
of Alenia computers Programming and Executing Environments ([SELl
87], [SEL2 87]), as well as with Ada terminology ([LRM 83] and
[User_guide]).

1.1 Linking Process

Ada linking process can be described as in the following figure.

ADA
Program Library <-- Main Unit

Ada Prelink

OMF
Representation <-- Program Architecture

Target Linking
GENRP

Executable
Program

1 - - .. .

Horizontal arrows represent inputs to linking process, while
vertical arrows represent actions performed by the linker
consequent on those inputs.

Two phases are identified in the linking process.

The former phase produces Ada program Intel Object Module Format (OMF)
representation. One or more host files support such a representation.
This is the collection of Ada compilation units selected by <main
unit>program, and correspond to Ada program as in [LRM 83] chapter
10.

In the latter phase Alenia Software Factory works to integrate OMF
Ada program with the piece of information to obtain an executable
program for Alenia computer. All Ada Run Time Supports are introduced
during this phase.

Ada Linker can be executed in two different modes, procedural and
automatic.

Procedural mode consists in successive and explicit calls to the
various tools necessary to generate the executable program.

Therefore, it provides call to Ada prelink, to linker target and to
GENRP. Call to Ada prelink occurs through / PRELINK qualifier (par.
1.1.1).

The automatic condition to generate an executable program employs
/LINK qualifier (par. 1.1.2) to activate automatically, in cascade,
all tools
used.

Beside the qualifiers described in [UserGuide] and [CLU], the
following qualifiers are allowed:

/PRELINK;
/LINK;
/TEMPLATE;
/MAP;
/DEBUG;

/PRELINK and /LINK accept all the qualifiers described in "ADA
Compiler User Guide" Cap.6.

/LINK also accept /TEMPLATE, /MAP, /DEBUG.

1.1.1 /PRELINK qualifier -

/PRELINK qualifier , defined by installation ADA 'command verb',
activates Ada prelink (it must be used in the place of /LINK

2

qualifier in (UserGuide] chap.6, therefore refer for use to such
chapter).

To generate an Ada program obtained with the procedural mode,
operations listed below must be implemented:

(be 'ada' the command verb used for Ada software factory
installation in host environment;

be 'main' the Ada unit name compiled
in 'Ada-library';

be 'graph.gra' the name of a graph;

be 'template' the name of a program architecture
given in graph.gra)

1) - ada/prelink/library='ada-library'/ofd=[.. <main>

2) - @<main>_link

3) - genrp template,graph.gra

1) The command

ada/prelink/library=' adalibrary'/ofd=[] <main>

activates Ada prelink.

In input it takes:

- The current sublibrary which includes the compiled <main>
unit

- Object File Directory name (OFD = [...1)

- Main unit name

In output it produces:

- An assembler file called <main> elab.asm which declares a
procedure called CG?ADAMAINPROGRAM, that is also known as "anonymous
task". It defines the processing order of main context (packages and
subprogram of which a "with" clause has been done), and activates the
main itself.

- A command file called <main> LINK.COM which invokes the
ASSEMBLER on <main> elab.asm, generates a temporary file LINK.CTF
which includes all object files that must be linked to the "main
program" and invokes the BINDER286 by trasmitting to it in input,
LINK.CTF file. BINDER286 output is a file whose naie is the same as
"main unit" name, and has .LNK extention,

2) The command

3

@<main>_LINK

executes <main>_LINK.COM file produced in the previous phase.

3) The command

GENRP 'template', 'graph.gra'

invokes GENRP [ref. MARA286 Computer Manual].

NOTE: If the files containing useful information for debugging (symbol
file and map in Ada format) are to be produced,it is necessary:

- To define "MAPPER LIBRARY" logic on "ADA LIBRARY" (logic ex:
DEFINE Mapperlibrary ada286_library).

- To specify ADAGEN in GENRP command (ex: GENRP
"emplate', graph.gra' ADAGEN)

Am example of the template to be used with the procedural mode
follows.

* Example

Be MYPROC the name of Ada main unit.
Be MYPROC.LNK the name of the output file produced by LINK.COM.
An example of program template follows:

system mysys;

program template mytemp large
code PRIVATE
data PRIVATE NODAL;

module :FMS :ADARTSAI/RTSDATA. OBJ relocatable;
module :FMS :ADABIOAl/BIODATA.OBJ relocatable;
module MYPROC.LINK relocatable;
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :ADABIOAl/BINDER286.LIB relocatable;
module :FMS :ADARTSA1/BINDER286.LIB relocatable;
module :FMS :KER286AO/ADAUS.LIB relocatable;
module GATELBA relocatable;

initial procedure MYPROC
stacksegment nodal size = OFFOOH;

end program;

hardware configuration;
volume DEFAULT VOLUME,
presence NODAL origin FIRST NODAL PAGE

LOCAL to 0 origin FIRST LOCALPAGE;

end configuration;

4

include MYTEMP;
initial process on 0 priority 2;

end system;

1.1.2 LINK qualifier

/LINK qualifier , defined by installation ADA 'command verb', enables
to obtain an executable program (.LTL) through a unique command in
which appropriate qualifiers specify (see [User's Guide]) the
parameters to be passed to the various tools involved in the
generation.

An example of invocation of automatic linking process is given
below:

(be 'ada' the command verb used for Ada software
factory installation in host environment;

be 'main' the name of Ada unit compiled
in adalibrary;)

- ada/link/library='adalibrary'/ofd=[...] <main>

The command executes:

1) Ada prelink invocation
2) <main> LINK.COM commands file execution
3) GENRP invocation

The command stresses GENRP with the following parameters:

- A default graph provided on installation is used as graph.
- From default graph is taken the template which has the same name

as the graph, and it is used as template.

DEFAULT graph will be called 'ada'.gra where 'ada' is the installation

"command verb".

The installation itself defines an 'ada'_graph logic on default graph.

Every user who needs particular and characteristic performances of its
execution environment (which are not provided by the default graph),
can define its own graph, but it must assign 'ada'_graph logic name
to this graph.

Example:

1) $ define ada286_graph mygra.gra

5

2) $ ada286/link/ofd=[]/library-mylib.alb main

These commands implicitly define the following GENRP invocation:

$ GENRP mygra, mygra.gra

i.e., it is assumed that in mygra.gra graph, a template called mygra
exists
[ref. par. 1.1.2.1.1 for additional information]

Default graph provides two program architectures relative to mono and
multiprocessor generations.

The graph SCL description is reported below:

system <graphname>;

program template <graph name> large
code PRIVATE
data PRIVATE NODAL;

module :FMS :ADARTSAI/RTSDATA.OBJ relocatable;
module :FMS :ADABIOAl/BIODATA.OBJ relocatable;
module <graph name> relocatable;
module :FMS : DACS86A0/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286.LIB relocatable;
module :FMS :ADABIOAI/BINDER286.LIB relocatable;
module :FMS :ADARTSAl/BINDER286.LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;

initial procedure caAdaMainProgram
stacksegment nodal size = OFFOOH;

end program;
$ eject

program template MULTI_<graph_name> large
code PRIVATE
data PRIVATE NODAL;

Subprogram GENERAL Repeatable;
module : FMS : ADARTSAI/RTSDATA. OBJ relocatable;
module : FMS :ADABIOA1/BIODATA. OBJ relocatable;
module ELABORATION source asm;
$ include (Repeated)
module :FMS :DACS86AO/ROOT. LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :ADABIOAl/BINDER286 .LIB relocatable;
module :FMS :ADARTSA1/BINDER286. LIB relocatable;
module :FMS :KER286A0/ADAUS. LIB relocatable;
module GATELBA relocatable;

6

end subprogram;

subprogram ZONE_-0 optional;
$include (ZoneO)
module :FMS :DACS86AO/ROOT .LIB relocatable;
module :FMS :DACS8EAO/RTHELP28E .LIB relocatable;
module :FMS :ADABIOA1/EINDER286 .LIB relocatable;
module :FMS :ADARTSAl/BINDER286.LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_-1 optional;
$include (Zonel)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP28E .LIB relocatable;
module :FMS :APABIOA1/BINDER28E LIE relocatable;
module :FMS :ADARTSAl/BINDER286.LIE relocatable;
module :FMS :KER286Al/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_-7 optional;
$include (Zone7)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS:KER2 86A0 /ADAUS.LIE relocatable;
module :FMS :ADABIOA1/EINDER286 .LIE relocatable;
module :FMS :ADARTSAl/BINDER286 .LIE relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_8 optional;
$ include (Zone8)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :ADAEIOA1/BINDER286 .LIB relocatable;
module :FMS :ADARTSAl/BINDER286 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_9 optional;
$ include (Zone9)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :ADARTSA1/BINDER286 .LIB relocatable;
module :FMS:AJDABIOAl /BINDER2 86. LIE relocatable;
module :FMS:KER2 86A0 /ADAUS .LIE relocatable;
module GATELEA relocatable;
end subprogram;

subprogram ZONE 10 optional;
$include (ZonelO)-
module :FMS :DACS86AO/ROOT.LIB relocatable;

module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :ADAEIOAl/BINDER286 .LIB relocatable;
module :FMS :ADARTSA1/BINDER286 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;

end subprogram;

subprogram ZONE_-11 optional;
$ include (Zonell)
module : FMS:DACS86AO/ROOT .LIE relocatable;
module :FMS :DACS86AO/RTHELP286 .LIE relocatable;
module : FMS:ADABIOAl /BINDER2 86. LIE relocatable;
module :FMS :ADARTSAl/BINDER286 .LIE relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_-12 optional;
$include (Zonel2)
module :FMS:DACS 86A0 /ROOT .LIE relocatable;
module :FMS :DACS86AO/RTHELP286 .LIE relocatable;
module :FMS :ADAEIOAl/BINDER286 .LIB relocatable;
module :FMS:ADARTSA1 /BINDER2 86. LIE relocatable;
module :FMS :KER2B6AO/ADAUS .LIE relocatable;
module GATELEA relocatable;
end subprogram;

subprogram ZONE_-13 optional;
$ include (Zonel3)
module :FMS:DACS86AO/ROOT .LIB relocatable;
module :FMS :DACS86AO/RTHELP286.LIE relocatable;
module :FMS :ADABIOAl/EINDER286 .LIE relocatable;
module :FMS:ADAJRTSA1 /EINDER2 86. LIE relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;
module GATELBA relocatable;

end subprogram;

subprogram ZONE_-14 optional;
$include (Zonel4)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIE relocatable;
module :FMS:ADABIOA1/EINDER286.LIE relocatable;
module :FMS:ADAP.TSA1 /BINDER2 86. LIE relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;
module GATELBA relocatable;
end subprogram;,

subprogram ZONE_15 optional;
$include (Zonel5)-
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIE relocatable;
module :FMS:ADAEIOA1 /EINDER2 86. LIE relocatable;
module :FMS :ADARTSA1/BINDER286 .LIE relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELEA relocatable;

end subprogram;

8

initial procedure CG AdaMainProgram
stacksegment nodal size = OffOOh;

end program;
hardware configuration;

volume DEFAULTVOLUME,
presence NODAL origin FIRSTNODALPAGE

LOCAL to 0 origin FIRST LOCAL PAGE,
LOCAL to 1 origin FIRST LOCAL-PAGE,
LOCAL to 2 origin FIRSTLOCAL PAGE,
LOCAL to 3 origin FIRST LOCAL PAGE,
LOCAL to 4 oigin FIRST-LOCALPAGE,
LOCAL to 5 origin FIRST LOCAL PAGE,
LOCAL to 6 origin FIRST LOCAL PAGE,
LOCAL to 7 origin FIRST LOCAL PAGE,
LOCAL to 8 origin FIRST LOCAL PAGE,
LOCAL to 9 origin FIRST LOCAL PAGE,
LOCAL to 10 origin FIRST-LOCAL-PAGE,
LOCAL to 11 origin FIRST LOCAL PAGE,
LOCAL to 12 origin FIRST LOCAL PAGE,
LOCAL to 13 origin FIRST LOCAL PAGE,
LOCAL to 14 origin FIRST LOCAL PAGE,
LOCAL to 15 origin FIRSTLOCALPAGE;
end configuration;

include <graph_name>;
initial process on 0 priority 2;

include MULTI_<graph_name>;
$include(SubprogramAssign)
initial process on 0 priority 2;

end system;

1.1.2.1 /TEMPLATE qualifier

<template> /TEMPLATE [= <identifier>]

<template> allows to specify which program architecture in the <graph>
file specified by 'ada'_graph, is required to generate an executable
program.

The following policies apply when <template> is either missing or
partially or totally specified.

a) if <template> is missing, then the following default is valid:
/template = <graphname>

b) if only /template is specified, then the following default is
valid:

/template - <main>

9

c) if /template = <name> is present, we assume that <name> is a
program in the graph indicated by <'ada' graph>

A GENRP error is reported when none of the above conditions can be
matched.

For more details see Par. 1.1.2.1.1 and 1.1.3.

1.1.2.1.1 WRITING A PROGRAM TEPLATE

Some precautions on writing a program template allows to make it
"universal" i.e. it can be used with various Ada programs with no
modifications.

In par. 1.1.1 an example of program template specialized in an Ada
procedure called MYPROC has already been illustrated.

It is clear that he produced graph can be exclusively used with
procedures which have the same name (MYPROC.LNK).

However, it is just by utilizing Ada linker structure that is
possible to reach that program template "universality" of use
mentioned above.

In order to reach this universality, it is necessary:

1) To assign tha same name to the template and to the main program
included in it.

• Example:

Program template STANDARD LARGE

CODE PRIVATE
DATA PRIVATE NODAL

module :FMS :ADARTSAl/RTSDATA.OBJ relocatable;
module :FMS :ADABIOAl/BIODATA.OBJ relocatable;
module STANDARD
module :FMS :DACS86AO/ROOT.LIB relocatable;
module : FMS : DACS86A0/RTHELP286. LIB relocatable;
module :FMS :ADABIOAl/BINDER286.LIB relocatable;
module :FMS :ADARTSA1/BINDER286.LIB relocatable;
module :FMS :KER286A1/ADAUS.LIB relocatable;
module GATELBA relocatable;

STANDARD is considered by Ada linker as a logic name assocoated to
the last .LNK file produced.
2) To assign to initial procedure CGADAMAINPROGRAM name exported

by Ada linker as entry point of the anonymous task.

• Example:

10

Initial procedure CG ADAMKINPROGRAM
stack segment nodal size = OFFOOH

These two rules together with 'ada' graph logic definition, and the
automatic use of Ada linker [rif. 1.1.2] make very easy the
generation of a relocatable program.

In addition, a graph construction will be done once at the
beginning of an application design.

This will allow the user to focus more on those aspects of Ada
language concerning its application.

1.1.2.2 /MAP qualifier

/NOMAP (default)

It is necessary to create the map (<main>.MGA) of the program to be
generated.

As regards map format and further information, see Mapper Userguide
[ADAMAP] and [GRP).

1.1.2.3 /DEBUG Qualifier -

/NODEBUG (default)
It is necessary for program debugging through IDA286 symbolic

debugger.

The output produced consists of 2 files:

- <main>.SYM

• <main>.TLD

(see IDA286 User's Guide)

1.1.3 Exampl, of Linker Use -

Generation of Ada programs on a monoprocessor.

Let's suppose that CATRIN.SCL contains the architectural
description of our execution environment.

scl text:

11

system CATRIN;

program template CATRIN
end program;
program template IPL CATRIN
end program;
program template TESTPROGRAM

end program;

end system;

Be SOME DIRECTORY the one in which CATRIN.GRA graph is produced.

Now let's assume that following Ada text refers to an Ada main
program:

ada text:

procedure TESTPROGRAM is
begin . .
end;

It is necessary to define SOME DIRECTORY:CATRIN.GRA as the user
default graph: (ADA286 - Ada Command verb)

$ define ada286_graph somedirectory:catrin.gra

Suppose that the linker invocation command for Ada TESTPROGRAM

procedural generation is the following:

ada286/prelink/ofd- []/lib=... /template=CATRIN TESTPROGRAM

@<main>_link

genrp CATRIN,ADA286_GRAPH

where CATRIN is the template used for the generation and CATRIN.GRA
is the graph.file.

Linker invocation command for Ada TESTPROGRAM automatic generation
can be one of the following:

a) ada286/link/ofd-[]/lib=... /template-IPLCATRIN TESTPROGRAM

b) ada286/link/ofd-[]/lib-.../template TESTPROGRAM

c) ada286/link/ofd-[]/lib-... TESTPROGRAM

The following generation rules apply to a), b) and c) (ref. par.
1.1.2.1

12

a) IPLCATRIN template of CATRINGRA is used for generation

b) TEST-PROGRAM template of CATRIN GRA is used for generation

c) CATRINTEMPLATE of CATRIN GRA is use . 'r generation

2 ADA LIBRARY

The [User Guide] reports organization and supporting tools of the
DDC 80x86 Cross Compiler System Program Library.

Here is the detailed structure of Ada program library delivered
in DACS86 product. Ada specification and comments of the program
units compiled in the Root Level Sublibrary are also included.

The root level of program library is subdued to configuration
management, it owns a version and a release number. It is reserved
for the compilation of general purpose services which range from
language standard domain to implementation standard domain. Therefore,
the user is strongly discouraged to compile in this sublibrary.

User compilations are recommended to introduce Program Units into the
Program Library starting from a second level sublibrary. Refer to
[User Guide] for details about sublibraries creation.

The first section reports the organization and the instruction for use
of delivered program library.

The following two sections describe organization and contents, in
terms of program units, of Ada Program Library delivered by the
implementation.

2.1 Program library

The figure represents DACS 80x86 VAX/VMS crossed Ada Program
Library delivered by the Implementation.

13

Root Level dacs86aO:dacssystem.alb
Sub Library dacs86aO:root.lib

II I
II

Application
Sublibraries

VAX/VMS files indicate the host files representing the
sublibrary.

DACS86AO:DACS SYSTEM.ALB collects all program units delivered
(compiled) iE the root sublibrary. To make the extraction of
Ada application from the library more efficient, the corresponding
object files are collected in Intel LIB286 library
DACS86AO:ROOT.LIB, too. These two files are therefore strongly
matched to each other, and the user should consider this kind of
consistency when he decides to perform any compilation in root
sublibrary. In chapter 7 of [User's Guide] can be found
instructions necessary to update DACS86AO:ROOT.LIB file when new
compilations are added to the root.

2.2 Root Sublibrary Content

Root Level Sublibrary exports services defined by the predefined
language packages and subprograms, as indicated in package
STANDARD declaration (cfr. [LRM] Appendix C). Specifications and
relative items depending on the implementation can be found in
Appendix F of [UserGuide].

This section also introduces the user to Ada supports defined to
access to the capabilities of Alenia computers architectural
components, both hardware and software.

Most of the above components present an environmental interface,
which is a library,may be generic, package specification. This
means that an application program can use them through the context
clause, as illustrated in the following example.

14

Example:

with <some architecturalcomponents> ;
procedure <some_application> is ... end;

In the library are delivered some packages necessary to support the
Cross Compiler and the Run Time Support.

3 MULTXPROCZSSOR PROGRAM GENERATION - [MPG]

Ada toolset supports multiprocessor target architectures, allowing
the code distribution to private memories of various processors,
and the possibility at run Time - through a particular package - to
fix the processor which must perform a particular task (ref. ADA RTS
package in [APP B]).

The user who prepares to implement a multiprocessor Ada program
must assure the physical addressability of objects and agents which,
though Ada visible, may be not physically visible, as they are wrongly
assigned in node memory.

Examples:

* Code addressability

package body P1 is

X:integer
procedure SOMEPROCEDURE(Y:in integer) is separate;

begin

SOME PROCEDURE (X)

end;

In order to allow the processing of this Ada text, SOMEPROCEDURE
compilation unit must have been allocated on the same processor which
is processing the P1 compilation unit.

e Data addressability

package SHARED is
VARCOM: integer :- 0;

end SHARED;
package body SHARED is . . .
end SHARED;

with SHARED;
package TASKDEF is

15

task type T is
entry E;

end T;

end TASKDEF;
package body TASKDEF is

task body T is
begin

accept E do
SHARED. VARCOM = SHARED. VAR COM + 1;

end;
end T;

begin . . .
end TASKDEF;

Each EXAMPLEA, EXAMPLE _ and EXAMPLE C compilation units include a
procedure declaration which, in turn, allocates a T object.

C.U. EXAMPLE A
with TASKDEF; use TASKDEF;
procedure EXAMPLE A is

TASK A: T;

begin

end EXAMPLEA;

C.U. : EXAMPLE B
with TASKDEF; use TASKDEF;
procedure EXAMPLE B is

TASK B: T;

begin

end EXAMPLE_B;

C.U. : EXAMPLE C
with TASKDEF; use TASKDEF;
procedure EXAMPLE C is

TASK C: T;

begin

end EXAMPLEC;

In case EXAMPLE A, EXAMPLEB, and EXAMPLE C procedures are
allocated on different processors, their invocation causes the

16

activation of tasks of T Type on these processors and the need to
access to the VAR COM shared variable (ref. [LRM] 9.14). This
requires a nodal allocation of this variable, in order to make it
actually addressable from each task.

Therefore, in order to meet addressability constraints, in relation
to code segments, the system designer must be sure that each local
area include, within it, the whole compilation unit code imported in
this area.

This result can be obtained either by allocating the code - referred
from various areas - in the nodal memory, or by repeating this code
in local memories of involved processors.

Nodal memory use is absolutely necessary when it is a matter of
assuring the addressability of data shared by various tasks on various
processors.

Code repetition is advisable in order to assure shared code
addressability.

3.1 Cluster

SCL configuration language allows the arrangement of a program in
subprograms, which make up the allocation unit within the node.
Each subprogram, in turn, is composed of one or more relocatable
or source format modules.

Particular remarks must be made when Ada language is used.

In fact, this language has a specific tool, the Ada Pre-Linker, which
can collect - from the program library - compilation units referred
by the main procedure of a particular Ada program. Yet, Ada
Pre-linker assures that the processing order (see [LRM ch. 10]) of
library units referred by the program is respected, by sequencing
its processing in <main>_ELAB.AS module. In a multiprocessor context,
not all library units are local to the processor which starts the
whole program processing. Thus, the migration of program
processing is needed when - consistently with the fixed order - the
elaboration of units allocated to a processor, different from the
current one, is required.

Ada Pre-linker must be informed of what library units have to be
processed by what processors, so that these migrations correctly
occur.

This piece of information is given in terms of compilation units
groups known as CLUSTERS, and to what processors they are allocated.
For this purpose, Ada Pre-linker makes available two qualifiers of
the command line: /CLUSTER and /PROCESSORASSIGNMENT (see [CLU]).

Cluster is a collection of compilation units correlated to one
another by a logic defined by the user. They represent the
allocation unit on a memory area, and as such, they provide the

17

means to organize an Ada Program in components which - potentially
- can be allocated in different memory areas.

3.2 Clusters Definition Criteria

This paragraph is aimed to list a series of criteria in order to
define the clusters of a specific program which must be processed in
a multiprocessor context.

These criteria have an impact on the architectural structure of a
multiprocessor program text, implying the need to compile separately
the program units which are to be allocated in any cluster. In a
monoprocessor context, program units separate compilation is due
essentially to reasons relating to software engineering.

In a multiprocessor program design, the identification of those
program fragments which must be allocated in different processors
becomes particularly important. This either in order to better program
performances, or to use particular hardware supports locally connected
to these processors.

This identification process is expressed in terms of compilation units
grouped in clusters which collect, as mentioned above, the units of
allocation to the different processors which are to be involved in the
processing.

Thus, the distribution criterium in a multiprocessor hardware context
is the leading criterium to clusters definition. We indicate this type
of cluster with the term: POLO.

Unlike [SCL] SUBPROGRAMS, clusters are limited by a memory segment
physical size. So, for a particular processor, the additional
definition of extension clusters can be needed.

Thus, a particular cluster size, in terms of code, can justify
additional clusters definition in relation to program poles. We define
this type of cluster with the term: GREGARIUS.

Clusters identified by previous criteria, may have non null
intersections at the level of the compilation units needed by various
processors. It is possible to perform a processor local repetition of
these compilation units code without modifying the program logic.
However, in order to make this possible, the definition of new
clusters with these units is needed to control their repetition.

Thus, the intersection of the poles and relative gregariuses,
justifies new clusters introduction. The following term indicates this
type of cluster: REPEATER.

The last criterium which can justify the definition of clusters, is
the need to put in the same physical memory segment two or more
compilation units which often are called. This minimizes the number
of run time switchings of code segments in the CS machine register
(call NEAR).

18

Procedural calls efficiency justifies new clusters introduction, or
processor clustering reorganization.
We indicate this type of cluster with the term: FAMILY

Besides the justifications already mentioned, there are not other
reasons which justify new clusters declaration. This does not mean
that these criteria allow the clustering of all compilation units of
a program. Rather often the programmer can express for some of them
no clusterization of those listed above. Tipically, these units lie
outside the programmer direct control and are imported in the
application by dependence relationships transitively expressed by
context clauses.

For these units, a total repetition on all processors involved in the
application processing is required. As the support de3cription will
show, the user has not to express explicitly this requirement as the
tool can define - on its own - an adequate number of clusters that,
however, will be shared out to all processors.

3.3 SCL Description

Likewise the default architecture for monoprocessor generations, SCL
description of multiprocessor generations architecture is the
framework of a programs family. Family programs differ in their
contents, and for the allocation of 16 optional subprograms, and of
a repeatable subprogram.

Subprograms contents parametrization is expressed by using the SCL
"$INCLUDE" directive of a file which lists the compilation units
allocated to the relative processor.

Subprograms allocation parametrization is expressed by using the SCL
"$INCLUDE" directive of the file of allocation of non empty
subprograms to required processors.

A SCL scheme of a multiprocessor program generic architecture is
reported below.

system <system name>;

program template <templatename> large
<default codeyprotection>
<defaultdatayprotectionandallocation>;

<repeatablesubprogram-declaration>;
{ <optionalsubprogramdeclaration>) 0..15;

initial procedure <templatename>
<stacksegmentsize-andallocation>;

end program;

hardware configuration;
<volume-declaration>

19

<nodal zone declaration>
{ <loci zone declaration> 1 0..15

end configuration; -
[<program-activation>]

end system;

<repeatablesubprogram declaration>
subprogram GENERAL repeatable;
module :FMS :ADARTSA1/RTSDATA. OBJ relocatable;
module :FMS :ADABIOAI/BIODATA.OBJ relocatable;
module :FMS:ELABORATION source asm;
<repeatedlist>;
{ <module> 1;
module :FMS :DACS8 6A0/ROOT. LIB relocatable;
module :FMS :DACS86AO/RTHELP286.LlBrelocatable;
module :FMS :ADABIOAl/BINDER286.LIB relocatable;
module :FMS :ADARTSA1/BINDER286.LIBrelocatable;
module :FMS :KER286A0/ADAUS.LIB relocatable
module GATELBA relocatable;

end subprogram;

<optional subprogram-declaration>
subprogram ZONE_<i> optional;

<zone list>;
<module> 1;

module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286.LIBrelocatable;
module :FMS :ADABIOA1/BINDER286.LIB relocatable;
module :FMS :ADARTSA1/BINDER286.LIB relocatable;
module :FMS :KER286AO/ADAUS. LIB relocatable;
module GATELBA relocatable;

end subprogram;

<repeatedlist> $ INCLUDE (REPEATED)
<zone list> $ INCLUDE (ZONE <zone identifier>)
<zone-identifier> : 0 I 1 I 2 I •. T 15

<program-activation>
<activationmodality>
<allocation directive>
<initial_process_declaration>

<activationmodality> . include <templatename>;
I invoke <templatename>;

<allocation-directive> . $ INCLUDE (SUBPROGRAMASSIGN);

"$ INCLUDE" directives must be placed in column 1.

"INVOKE" activation specifications require a function declaration
which includes their declarative (see [SCL]).

"Repeatable" subprogram contains the common utility code (for
instance the libraries which allow Ada program to use Run Time Support
services, the code which provides for compilation units processing,
etc.) . The i-nth optional subprogram includes the whole and only the

20

code that it has to execute on the i-nth processor.

In [APP B] section, MULTI ADA286 program SCL text is reported. The
rules described here have been applied to this text.

3.4 Linker use in multi generation

In Ada programs multi generation, the use of automatic mode is
recommended as it makes generation easier.

As in the case mono, a default graph to which 'ada'_graph logic is
associated, which exports a multi architecture [APP. B] is delivered.

If the user decides to adopt its own graph for generations, it must
reassign 'ada'_graph logic to this graph.

The templates of 'ada'_graph that the user wants to use for multi
generation are to be builded following these rules:

1. The name of the template must begin with the prefix MULTI_ because
the linking process adds always MULTI_ to the template name specified
in the invoking command.

For the use of /TEMPLATE qualifier in multi generations the same rules
of case mono applies:

A) If /TEMPLATE is not specified in linker invocation command, the
following rule is valid:

<template name> = MULTI_<graph name>

(as Ada linker, for multi generations, which can be recognized by
means of the use of /CLUSTERIZATION and /PROCESSOR ASSIGNMENT
qualifiers, assigns as template name composed of the prefix MULTI
followed by the name of the graph.
(see rule a) par. 1.1.2.1).

Example

$ define ada286 graph MYGRA.GRA

$ Ada286/link/ofd=. .. /clu=. .. /proc=... MYPROC

means that the template which is to be used in MYGRA.GRA is:

<template name> = MULTIMYGRA

B) If /TEMPLATE is partially specified, the following rule is

valid:

<template name> = MULTI_<main unit>

Ada linker, for multi generations which can be recognized by means of
the use of /CLUSTERIZATION and /PROCESSORASSIGNMENT qualifiers,

21

assigns to the template a name composed of the prefix MULTI followed
by the name of the main unit (see rule b) par. 1.1.2.1).

• Example:
$ define ada286_graph MYGRA.GRA

$ ada286/link/ofd=../lib=../clus=../proc=../template MYPROC

means that the template which is to be used in MYGRA.GRA is

<template name> = MULTIMYPROC

C) If /TEMPLATE is totally specified

/TEMPLATE = <template>

the following rule is valid:

<template name> = MULTI_<template>

Ada linker, for multi generations, which can be recognized by means
of /CLUSTERIZATION and /PROCESSOR ASSIGNMENT qualifiers, assigns to
the template a name composed of the prefix MULTI followed by the name
of the template (see rule c) par 1.1.2.1).

Example:

$ define ada286 graph MYGRA.GRA

$ ada286/link/ofd=../lib=../clu=../proc=../temp=MYTEMP MYPROC

means that the template which is to be used, in MYGRA.GRA graph is:

<template name> = MULTIMYTEMP

NOTE:
If linker invocation command is:

ada286/link/ofd=../lib=../clu=../proc=../temp=MULTI MYTEMP MYPROC

then

<template name> - MULTIMULTIMYTEMP

MYGRA.GRA graph used in the examples above, is done as follows:

SCL text:
system MYGRA;
program template MULTIMYGRA..
end program;

program template MULTIMYPROC..
end program;

22

program template MULTIMYTEMP..
end program;

program template MULTI MULTI MYTEMP..
end program;

end system;

- The use of CG ADAMAINPROGRAM as "initial procedure" name to be given
in SCL is recommended.

- The use of ELABORATION (exported by the anonymous task) as name of
the assembler module to be included in GENERAL subprogram is
recommended.

2. The following logics must be defined before of the graph

compilation, otherwise SCL286 Compiler fails.

The logics to be defined are:

- REPEATED must be defined on a file REPEATED.INC initially empty.

- ZONEi (i = 0..15) must be defined on a file ZONEi.INC initially
empty

- SUBPROGRAMASSIGN must be defined on a file SUBPROGRAMASSIGN.INC
initially empty

The ada linker will associate the *.INC files to the opportunes .OBJ

3. The name of the "initial procedure" given in the example of (APP
B] is CG ADAMAINPROGRAM which is an equ defined on CG?ADAMAINPROGRAM.
CG?ADAMAINPROGRAM is the name of the public procedure of
<main>_ELAB.ASM which gives the elaboration order of an Ada program.

4. As name of the assembler module to be included in the GENERAL
subprogram the user can use ELABORATION ([APP B]).
This is a logic that the linker will provide to assign to the last
<main> ELAB.ASM produced.

If there is the use of the qualifiers /SEARCHLIB and /INTERFACED in
a multi generation there is the insertion of the specified interface
modules (object files or libraries) only in the subprogram GENERAL of
type repeatable.
It is impossible to insert interface units not ADA in types of
subprogram not repeatable because the last cannot be inserted in the
cluster specifications.
The names of the interface files specified with with the qualifiers
above must follow SCL sintax, in fact they must be processed by SCL286
compiler.

23

3.4.1 Linker Use Example

Ada multiprocessor programs generation.

Given the following Ada text:

with Ada RTS;use Ada RTS;
package UOMPUTER 0 i-s
task PROCESSOR 0 is

entry ARE YOU THERE (no : out computer id);
end PROCESSOR_0;-

end;
package body COMPUTER 0 is
task body PROCESSOR_0 is

begin
accept ARE YOU THERE(no : out computerid) do

no:= myq_computer;
end ARE YOU THERE;

end PROCESSOR_0;
end COMPUTER 0;

with Ada RTS; use AdaRTS;
package COMPUTER 1 is
task PROCESSOR 1 is

entry AREYOUTHERE(no : out computer id);
end PROCESSORI;

end;
package body COMPUTER 1 is
taskbody PROCESSOR_1 is

begin
accept ARE YOU THERE(no : out computer id) do

no:i= my computer;
end AREYOUTHERE;

end PROCESSOR 1;
end COMPUTER_1;

with Ada RTS; use AdaRTS;
package COMPUTER 2 is
task PROCESSOR 2 is

entry AREYOUTHERE (no : out computer id);
end PROCESSOR_2;

end;
package body COMPUTER 2 is
task body PROCESSOR_2 is

begin
accept ARE YOU THERE(no : out computer-id) do

no:= my-_computer;
end ARE YOUTHERE;

end PROCESSOR_2;
end COMPUTER 2;

24

with REPORT;use REPORT;
with Ada RTS; use Ada RTS;
with COMPUTER 0; use COMPUTER 0;
with COMPUTER1-; use COMPUTER_1;
with COMPUTER_2; use COMPUTER_2;
procedure FIRST is
whichcomputer : computerid;
begin
text("FIRST","Processor migration occurs"&

"during context processing");
comment("PROCESSOR 0 is active");
PROCESSOR 0.AREYOU THERE(whichcomputer);
if which computer /= 0 then

failed("PROCESSOR_0 is not on processor 0");
end if;
comment("PROCESSOR 1 is active");
PROCESSOR 1.AREYOU THERE(whichcomputer);
if which computer /7 1 then

failed("PROCESSOR_1 is not on processor 1");
end if;
comment("PROCESSOR 2 is active");
PROCESSOR 2.AREYOU THERqE(whichcomputer);
if which computer /--2 then

failed("PROCESSOR_2 is not on processor 2");
end if;

result;
end first;

Clusterization file:

FIRST

FIRST

POLO_0

COMPUTER 0

POLO-1

COMPUTER 1

POLO_2

COMPUTER 2

File of assignment to processors:

FIRST 0001
POLO 0 0001
POLO 1 0002
POLO_2 0004

25

4 Ad& Run Time Supports

Ada Run Time Supports for Ada applications execution are mainly
located in Kernel Program of the Initial Program of an Alenia target
computer. This means that the application needs very few codes to gain
access to such run time supports.

This code is defined by the following set of OMF modules which are
part of the cross compiler installation kit.

module :FMS:ADARTSAI/RTSDATA.OBJ relocatable;
module :FMS:ADABIOAl/BIODATA.OBJ relocatable;

module :FMS :ADABIOA1/BINDER286. LIB relocatable;
module :FMS :ADARTSAl/BINDER286.LIB relocatable;
module DACS86AO:RTHELP286.LIB relocatable;

The first two modules define a data segment reserved to system data.
It is accessed only by run time system during the program elaboration.
The last three modules define all run time support services required
by Ada program elaboration.

The user must assure that the two .OBJ modules and the three .LIB
modules, respectively go first and follow all compiled Ada code (see
[DPG]).

Accordance with the above requirements enforces first the correct
relocation of run time system data in thereserved data segment.
Secondly, it guarantees the visibility of the procedural supports of
the run time system which is delivered in the .LIB modules.

5 TASK CONFIGURATION

Any task declaration is configurable with respect to the priority used
by Run Time System to elaborate task and with respect to dynamic
storage size and allocation required by task elaboration. We briefly
recall the way to give default values for following configuration
items which must be supplied in each Ada program generation.

1) task priority;
2) task segment size and allocation;
3) task stack size;

Few examples guide the user in introducing this information into the
program.

5.1 Task Priority

For the current version of ADARTS and for the old ones the following
rules applied.

26

1. Default priority of the anonymous task id fixed at SCL time with

the priority directive.

initial process on 0 priority 2;

It can be modified using the pragma priority with values from 0 to 7.
Note that priority'FIRST is equal to 1 (for the current version).

2. All other tasks start with a priority equal to the SCL value
spacified for the main program, this priority can be changed by the
use of pragma PRIORITY. Inner task ineredits the priority of parent
task.

5.2 Task Segment Size

A stack segment is reserved for each library task and for each main
program.

For each task is reserved a portion of stack (Stack Branch) in the
stack segment; the branch stack for an inner task (that is a task
whose implicit or esplicit type is contained in an Ada frame - Ada
Reference Manual par 11.2) is allocated in the same stack segment of
the task which has activated it.

The size of the stack segment of the main can be specified in the
following ways:

STACKSEGMENT SIZE = N

(SCL jtatement; N hex value): it is the size in bytes of the stack
segment created for the Main Task.
Its value is specified in the Program Template of the Ada program.
The linker qualifier /MPSEGMENTSIZE = N has no effect.

scl text:

/* scl declarative part.*/

initial procedure CG AdaMAinProgram
stackstigment nodal size = OFFOOH;

The size of the stack segment for a library task is specified by:

/LTSEGMENTSIZE - N

(linker qualifier): specifies default segment size for all library
tasks to be N words (decimal value).
If this value is not specified the default is the size expressed in
SCL for the main.

pragma LTSEGMENTSIZE(T, N)

27

(part of Ada source text): specifies segment size for library task T
to be N words (decimal value) if it is a Library Task.

- Function SETCHILDSEGMENT_SIZE exported from the package
ADA RTS ([APX A]);
the size is expressed in word.

The size of the stack segment includes always the Page Map that is the
two pages reserved on the stack for the Run Time Support of Ada.

Furthermore, the stack segment size specified and the stack segment
size actually used aren't the same, because the ADARTS provides to add
some words for page alignment.

5.3 Task Stack Size

For each task is reserved a portion (Task Branch) in the stack segment
allocated for it.

A branch has the following structure:

PSA (Process Stack Area)

Portion of stack
used by the task

Reserved Space for
Exception Handling

The Process Stack Area is an area where are stored some task
informations; the size of this area is 12H storage units for a library
task, while is 10H storage units for an inner task.
Under the PSA there is the part of the stack used by the task to
allocate the various blocks during its execution.
There is also a zone reserved for the exception handling and its size
is 50 storage units.
If the Main Task or a Library Task have no inner tasks (i.e. tasks
that are not library tasks), then the Branch Size (page aligned) can
be up to the Stack Segment size minus 512; otherwise the sum of the
Branch Size (page_aligned) of all the inner tasks depending from the
main or a Library Task plus 512 must be less than the Segment Size.

The Stack Branch Size of a task can be specified in the following way:

28

/MPSTACKSIZE = N

(linker qualifier): specifies stack size for the main program to be
N words; it is the default value for /LTSTACKSIZE.

/LTSTACKSIZE - N

(linker qualifier): specifies default stack size for library tasks to

be N words.

/TASKSTORAGESIZE - N

(linker qualifier): specifies default stack size for all non-library
tasks stacks to be N words.

for T'STORAGESIZE use N

(part of Ada source text): specifies that the size of the stack for
task type T should be N words.

The stack size specified and the stack size actually used aren't the
same, because the ADARTS provides to add some words for page alignment

5.4 Example

The following example illustrates how to use the previous parameters
in order to set segment size and stack size.

package library_tasks is
task type tl;
pragma lt segmentsize(tl,1000);
for tl'storage_size use 550;
ttl :tl;
task t2;
-- segment size - value of /LT SEGMENT SIZE
-- stack size - value of /LT-STACK SIZE

end library_tasks;
package body librarytasks is

task body tl is

end tl;
task body t2 is
task t21;
-- stack size - value of /TASKSTORAGESIZE

task t21 is

end t21;
end t2;
end library_tasks;

with librarytasks;
proceiure main is

task tml;

29

-- stack size - value of /TASKSTORAGESIZE
task body tml is
begin

null;
end tml;
-- stack size of main - value of /MPSTACKSIZE

begin
null;

end main;

SCL text:

program template main

initial procedure main
stacksegment nodal size = OFFOOH;

end program;

Suppose that the linker command has the following qualifiers:

/MP STACK SIZE - 7000
/LT-SEGMENT SIZE = 8000
/LT-STACK SIZE = 600
/TASK_STORAGE_SIZE - 900

The program given in the example contains a main task, two library
task (TT1, T2) and two inner task (T21, TMI). Here there is the
allocation of three stack segments:

* one stack segment with size = OFFOOH bytes for the main task (by
STACKSEGMENT SIZE = OFFOOH)

* one stack segment with size = 1000 word for the library task TTl
(by PRAGMA LTSEGMENTSIZE)

* one stack segment with size = 8000 word for the library task T2
(by /LTSEGMENT_SIZE)

Moreover there will be the allocation of the following branches inside
the stack segment above mentioned:

* one branch stack for the main task with size = 7000 word (by
IMPSTACKSIZE)

0 one branch stack for the library task TTI with size - 550 word
(by length clause)

0 one branch stack for the library task T2 with size = 600 word
(by /LTSTACK_SIZE)

* one branch stack for the inner task T21 with size - 900 word (by

30

/TASKSTORAGESIZE) in the stack segment of T2

* one branch stack for the inner task TMl with size - 900 word (by
/TASKSTORAGESIZE) in the stack segment of the main

6 Objects Dynamic Allocation

6.1 System Heap

System Heap is a segment in which collections without associated
length clauses are allocated.

* Example:

type ARR1 is array (1..10) of integer;
type ARR2 is array (1..15) of integer;
type PUNT1 is access ARRI;
type PUNT2 is access ARR2;

varl : puntl;
var2 : punt2;

Objects of ARR1, ARR2 type, created with NEW allocator, form a
collection in which no length clause has been fixed, consequently they
are allocated in System Heap.

System Heap segments are created as nodal or local according to
indications in SCL concerning data segments allocation.

If data segments allocation has been fixed in nodal memory, System
Heap segments will be nodal, too.
Similarly, if data segments allocation is in local memory, System Heap
segments will be local.

6.2 Heap Segment

Collections with applied length clause are allocated in Heap Segments.

* Example:

type ARR1 is array (1. 10) of integer;
type ACCI is access ARRI;
for ACCISIZE use 80;
VARI : ACCI;

The same rules valid for System Heap apply to Heap Segments
allocations in nodal or local memory.

31

7 Zxceptions handling

This subsection describes process Exception Handling (AEH) andfunction Exception Handling supplied by Run Time Support for the
execution of ADA programs.

AEH is the process Exception handling associated to any process which
implements an ADA task.

It is activated whenever there is an exception, whether it is Ada or
is not Ada.

codice INTERFACE exc. non ADA -------

v

codice ADA exception ADA AH A

AI .1 I
sistema operativo exc. non ADA -------

- fig. 1-

Function Exception Handling is activated by RTS when main programprocessing concludes because of unhandled exceptions

32

Ada program

Exception

Exception Unhandled
Handling Exception

Program
Termination

Function E.H.

- fig 2 -

7.1 Process Izception Handlng

Ada Exception Handling (AEH) is part of Run Time Support (RTS), whose
ask is to perform exceptions handling policies according to
description in [LRM] chapter 11.

AEH handling policies vary according to the following factors:

frame typology (see 11.2 - [LRM])

block statement
body of subprogram, package, task, generic unit

33

* statement typology

* declarative
* executive

presence or absence of 'exception handler'

AEH must search a handler for the raised exception and consequently
perform the following actions:

* if there is a handler in the damaged frame:

* transmit control to it

* if there is no handler in the damaged frame, look after:

. propagating exception until handler is detected, without
overcoming task or main program level
• terminating the program in execution, when propagation is arrived
at main level

7.2 Function Exception Handling

Function Exception Handling is activated when a specific exception,
being not handled, propagates until the most external program level
causing, as a consequence, the termination of the program itself.

Each function possesses a default function exception handling.

Anyway, implementation makes a function and non-default Exception
Handling available, which executes main history layout starting from
the damaged block.

It is actually an RTS optional component which the user can profit by
only if it has been explicitly activated.

Activation specification and function EH layout structure supplied by
the implementation are described in section 6.6 .

7.3 Interaction specification with process EN

This chapter describes AEH different behaviour depending on execution
code, that is Ada code or non Ada code performed by Ada task through
subroutine calls to which Pragma INTERFACE has been applied

Exceptions can be raised during Ada task execution:

" caused by Ada code execution

" caused by non Ada code execution

The former case includes all those anomalous circumstances described
in terms of the 5 predefined exceptions as well as those anomalous

34

circumstances expressed through non-predefined exceptions declaration.

All the exceptions of this group are handled by process AEH according
to language rules (see 11 - [LRM]).

The latter case includes all those exceptions causes due to the
operating system and to subroutines execution
through pragma INTERFACE.

Typically, anomalous circumstances in this latter case are detected
either by interrupt mechanisms or by calls to RaiseException.

AEH is informed of such events through appopriate error codes listed
in [KERNEL] Appendix 15.

The example shows exceptions raised in Ada code and non Ada code:

Case 1 - exceptions in Ada code

procedure PROVAl is

A:array(l..10) of INTEGER;

begin

for I in 1..20 loop

A(I):=0; - CONSTRAINTERROR is raised here

end loop;

exception

when CONSTRAINT ERROR =>...; - CONSTRAINT ERROR is handled h re

when others

nd PROVAl;

with TEXTIO;use TEXT_10;
procedure RAISING is
MYEXCEPTION :exception;

begin
raise MYEXCEPTION;

exception
when MYEXCEPTION => PUTLINE(my exception);

NEW LINE;
when others => PUTLINE(predefined exception);

NEWLINE;
end RAISING;

- fig.3 -

35

Case 2 - exceptions in non Ada code

MAIN:do;
RAISEEXCEPTION : procedure (pl,p2,p3,p4) external
declare (pl,p2,p3,p4) word;

end RAISEEXCEPTION;
FOREIGN : procedure public;

CALL raiseexception(OE081H, 0,0,0);
/* OE081H is raised here */

end FOREIGN;
end MAIN;

procedure PROVA2 is
procedure FOREIGN;
pragma interface(PLMACF,FOREIGN);

begin
FOREIGN; - OE081H is raised here

exception
when STORAGEERROR =>
when others ...

end PROVA2;

- fig.4 -

The handling of exceptions raised during non Ada code execution is
performed by AEH through exception propagation into Ada code and
through a default mechanism which translates each non Ada exception
into one of the 5 predefined Ada exceptions.

In addition, the programmer may also define his own transposition
mechanism to translate non Ada exceptions into predefined and not Ada
exceptions.

In this case, the programmer himself must lead AEH to use such
non-default associations. The way to implement this will be shown
later on in this paragraph.

Transposition mechanism supplied by AEH, what will be later called
default, performs the following associations:

J' i n n m m ii m i n m

A030H storage_error
C031H programerror
C032H programerror
C034H programerror
C035H programerror
C03BH program_error
A03CH storageerror
A03DH storage error
A03EH program_error
A042H programerror
C052H program_error
C06EH constraint error
E06FH programerror
E073H program error
C075H numericerror
C076H numeric error
E079H program_error
C080H programerror
E081H storageerror
COFOH numeric error
EOFlH program error
A410H storageerror
A411H storageerror
A412H storageerror
A414H storageerror
C421H program_error
C422H program_error
C423H program_error
C427H programerror
C429H program error
C42EH program error

- fig. 5 - Default association table

Note that all non Ada exceptions codes present in default table are
translated by AEH into FOREIGNEXCEPTION Ada exception defined in
package SYSTEM.

Therefore, the previous example in fig. 4 can be updated folowing use
in the given table, as shown

37

Case 2:

MAIN: do;

RAISEEXCEPTION : procedure (pl,p2,p3,p4) external;

declare (pl,p2,p3,p4) word;

end RAISEEXCEPTION;

FOREIGN:procedure public;

CALL raiseexception(OE081H, 0,0,0);

/* OE081H is raised here */

end FOREIGN;

end MAIN;

procedure PROVA2 is

procedure FOREIGN;

pragma interface (PLMNOACF,FOREIGN);

begin

FOREIGN; - STORAGEERROR is reraised here
exception
when STORAGE ERROR =>...; - STORAGEERROR is handled here

when others =>

end PROVA2;

- fig 6 -

Whenever the user need to define different associations from default
ones, than he must write a table the way is shown in figure 7

38

Ada compilation unit

Table size

non Ada
exception

codes

Ada
exception

codes

- fig.7 - Association table

'Ada compilation unit' field must contain the number (taken in ADA
sublibrary) of compilation unit in which has been declared.

The number of compilation unit can be found through 'Program Library
Utilities' (see chap. 4 [User's Guide]).

'Table Size' is the number of exceptions codes listed in one of the
following subtables.

In 'Non Ada exception codes' field non Ada exception codes must be
listed , that the user wants to translate based on his associations.

In 'Ada exception codes' field Ada exceptions codes are listed
(predefined and not), chosen by the user to translate the errors list
given in the previous field.

Each element in the assosciation table must occupy a 16 bits space.

'Non Ada exception code' and 'Ada exception codes' must clearly
contain th same codes number (one to one association between the two
subtables entries).

Figure 8 reports the example of association table supplied by the
user:

39

0

3

100

3081

C080

1

3

4

fig 8

Note:

Each exception is defined through a double word (definition is given
in package STANDARD)

one word containing the compilation unit defining it

one word containing progressive declaration order

From table in figure 8 we desumw that:

1) The compilation unit is that of package STANDARD (0 is it
number in root sublibrary) which contains the definition of the 5
predefined Ada exceptions

2) Entry number of each subtable is 3

3) Implemented associations are:

0100H -- > 0:1 or CONSTRAINT ERROR
OE081H -- > 0:3 or PROGRAM ERROR
OC080H -- > 0:4 or STORAGEERROR

The user must lead AEH to use its own non-default association table
(not default one) and this occurs when you give significant values to
RaiseException procedures parameters and precisely the following:

* The value of P1 parameter must be such that, after performing
a logic AND with a "1700" value it preovides still "1700" result (P1
and 1700 = 1700).

* "P2" and "P3" parameters must contain the pointer to association
table (P2 = selector and P3 = offset).

40

* "P4" parameter must be exception code as is listed in "Non Ada
exception codes" subtable.

Let's analyze now the following example:

package PACK is
procedure FOREIGN;
CONTRAINT ERROR :exception;
OLD EXCEPTION :exception;
MEWEXCEPTION :exception;

private
pragma INTERFACE (PLMACF, FOREIGN);

end PACK;

WITH pack;
procedure PROVA is
begin
PACK. FOREIGN;
exception
when PACK.CONSTRAINT ERROR => null;
when OLD EXCEPTION => null;
when others

end PROVA;

Suppose that:

* 8193 is PACK compilation unit number

* association table supplied by the user is structured as follows:

8193

4

200
OC06E
OCOFO
OA06D

1
2
2
3

- fig.10 -

41

The user chooses the following associations:

0200H -- > 8193:1 or CONSTRAINT ERROR
OC06EH -- > 8193:2 or OLD EXCEPTION
OCOFOH -- > 8193:2 or OLD EXCEPTION
OA06DH -- > 8193:3 or NEW EXCEPTION

In order to use his own association table, the user must:

declare the table

- perform calls to RaiseException according to the rules given
before

Here is an example of use:

MAIN:do;
RAISEEXCEPTION:procedure (P1,P2,P3,P4) external;
declare (P1,P2,P3,P4) word;
end RAI SEEXCEPTION;
FOREIGN: procedure public;
declare TABLE (*) word data (8193H,

4,
200H,

OC06EH,
OCOFOH,
OA06DH,

1,
2,
2,
3);

declare PTR pointer;
declare (MYOFF,MYSEL) word at (@PTR);
declare RESULT word;

PTR = @TABLE;
/* <call to Kernel procedures> */
if RESULT <> 0 then
call RAISEEXCEPTION(1701H,MYSEL,MYOFF,200H);
/* <call to Kernel procedures> */
if RESULT <> 0 then
call RAISEEXCEPTION (1701H,MYSEL,MYOFF, OC06EH);
end FOREIGN;
end MAIN;

- fig.11 -

NOTE: CONSTRAINTERROR exception declared in PACK package is
different from CONSTRAINTERROR declared in STANDARD
package.
While the former is identified by (8193:1), the latter is identified
by (0:1).

42

In some cases process AEH behaviour is not dictated by language rules,
but depends on implementation.
Particular cases are analysed below:

overflow situations in real or fixed type operations are not
declared by NUMERICERROR, but the user can detect them using
MACHINE OVERFLOWS attribute (see C.1.3 Users Guide, see. 4.5.7 -
Reference Manual).

memory violation is declared as PROGRAM ERROR. stack

overflow and underflow cases are declared as STORAGEERROR.

7.4 Use of ExceptionCode

ADA RTS package, present in Ada Program Library, exports a function
called ExceptionCode, which returns in an UNSIGNEDWORD type
variable (defined in package SYSTEM) the code of the last non Ada
exception raised during a program.

If no non Ada exception has been raised, it returns value 1700R.

This function is particularly useful in case the association
performed by AEH or chosen by the programmer is such that
FOREIGNEXCEPTION is notified as non Ada exception raised during
the execution of a program.

An example of use is given below:

with SYSTEM;use SYSTEM;
with ADA RTS;use ADA RTS;
with TEXT IO;use TEXT_10;
procedure7P PROC is
procedure FOREIGN;
pragma interface (PLM86,FOREIGN);
package PUT UNS W is new INTEGER IO(UNSIGNEDWORD);
use PUT UNS W;
MARA EXC : UNSIGNEDWORD := 0;
begin

FOREIGN; - raises STORAGEERROR;
exception
when STORAGE ERROR -> MARA EXC := EXCEPTION CODE;

PUTLINE (The original code &
of non Ada exception is:);

PUT (MARAEXC,BASE=>16);
NEW LINE;

when others Z> PUT LINE(other exception);
NEW-LINE;

end PPROC;

- fig.12 -

43

7.5 Printout Of Exception Spelling

The package ADARTS contains two function:

0 RTSGetExceptionld
* RTSGetExceptionSpelling

which are necessary to obtain the complete name of the last exception
occurred.
In fact from the release 4.6, ADA compiler allows the retrieval of
full spelling for raised exceptions.
The linker extracts all exception spellings from all ingoing units and
places them in the elaboration code module from which they may be
identified. So there is the use of two routines: one to retrieve the
last raised exception (RTSGetExceptionId) and one to translate an
exception identifier into a string (RTSGetexceptionSpelling).
Here is an example of the use of these procedures in a program where
there is the declaration of some exceptions:

Example:

with Text 10; use Text_10;
with System; use System;
with Ada rts; use Ada rts;
procedure excspell is

tempoutside-limit:exception;
fire, break in:exception;
stackoverflow, stack underflow:exception;

begin

raise fire;

exception

when fire =>
put(RTSGetExceptionSpelling(RTSGetExceptionId));

end excspell;

7.6 Use of pragua INTERFACE

Pragma INTERFACE form is the following (see C.2.4 - [User Guide]):

pragma INTERFACE (language_name, subprogramname).

<languagename> types allowed by the implementation are defined in
package SYSTEM (see. F.3 - Users Guide).

<Languagename> can be followed by the following annotation:

44

ACF or NOACF.

ACF annotation notify to AEH that you have passed from Ada code to
non Ada code, therefore exceptions handling policy must follow the
rules valid for this case and expressed previously in this section.

If <languagename> is of NOACFS type, AEH cannot individuate Ada code
from non Ada code and its exceptions handling politic follows given
rules for handling of exceptions from Ada code, ignoring completly the
fact that it works in non Ada context.

This situation does not preserve the user from incorrect exceptions
handling.

PLM86 and PLM ACF annotations are equivalent, in fact both ensure

exceptions han-dling.

Similarly for C86 and C ACF.

On the contrary, for ASM86<language_name> the rule is the following:

ASM86 is equivalent to ASM NOACF, while ASM ACF use ensures the
handling of exceptions raised in non Ada code.

7.7 Use of Trace-info Procedure

From the version 1.5 of ADARTS and from the version 4.5.4.1 of ADA
compiler it'is possible to use a procedure which gives some
informations related to the address and the identifier of an exception
raised in an ADA program.

The name of this procedure is : TraceInfo

The specification of this procedure is contained inside the package
ADARTS, the body is written in ASM286.
The procedure TraceInfo has a parameter (in out) of a type record
declared
in the package ADARTS too.

The spacification of the procedure is

procedure TRACE INFO(PSA : in out PSAREC);
pragma interface (ASM286, TRACEINFO);

The declaration of the record type is:

type PSA REC is
record

Unit no : system.unsignedword;
Exception id : system.unsignedword;
Mara-code : system.unsignedword;
Exceptionoffset : system.unsignedword;
Exceptionselector : system.segmentid;

end record;

45

[NOTE - the type UnsignedWord is defined in the package SYSTEM.]

The fields UNIT NO and EXCEPTION ID of PSA REC give some informations
about the exception identifier.-

The field MARA CODE give the original code of the exception.

The fields EXCEPTION SELECTOR and EXCEPTION OFFSET give the address
of the exception.

The TRACE INFO procedure must be called inside an Ada Exception
Handler defined in the same level or in a more external level respect
to the block which has raised the exception.

The following procedure give an example about the use of the
TraceInfo.

with TEXT 10; use TEXT 10;
with SYSTEM; use SYSTEM;
with ADARTS; use ADA RTS;

procedure main is
psa: psarec;
package my_uns is new integer io(unsignedword);
use my uns;

begin
raise storage_error;

exception
when storageerror => ada rts.trace info(psa);

put line("the exception address is:");
my_uns.put(psa.exception selector,base ->16);
my_uns.put(psa.exception_offset,base =>16);
newline;
put_line("the original exception is:");
my_uns.put(psa.maracode,base =>16);
new-line;
putline("the exception identifier is:");
my_uns.put(psa.unit no,base =>16);
my_uns .put (psa.exceptionid,base =>16);

end main;

7.8 Interaction specification with function NH

This paragraph shows behaviuor of optional function EH supplied by the
implementation and the ways to set it.

It is called optional because it works only after it has been
explicitly set, otherwise default
or previuosly set one is inherited (if setting has occurred).

Function EH provided by RTS executes a main program evolution
tracing, terminated because of

46

unhandled exception, from the exception point up to its deactivation.

Tracing shows the following information:

• identifier of the raised exception
* identifier of the damaged block which can be a block statement
or a subprogram.
As regards the subprogram, the subprogram starting address is

supplied, too.

The last inforration is repeated for all activated blocks until main
program is attained.

The following example reports an Ada program tracing which does not
include the handling of possibly raised exceptions:

procedure APPLICATION is
procedure INTERNAL is
begin
raise PROGRAMERROR; - not handled
end INTERNAL;
begin
begin - inner block
INTERNAL; - subprogram call
end;
end APPLICATION;

- fig. 13 -

Tracing is:

START OF TRACING

Unit number and exception identifier: 0000:0003
Unhandled exception raised at: 0067:0039

Trace back follows:
BP value is: FDB6
Subprogram entry point is: 0067:0028

BP value is: FDC8
Inner block

BP value is: FDD8
Subprogram entry point is: 0064:0010

BP value is: FDDE
Subprogram entry point is: 007C:0008

47

BP value is: FFFF

END OF TRACING

- fig. 14 -

Unit number and exception identifier is the exception identifier.

Unhandled exception raised at provides the exception original address.

BP value is is BP register value (BP detects frame univocally).
Subprogram entry point is is the subprogram starting address (if the
frame is a block statement, inner block nformation will be
visualized).

Optional function EH is visible to the user as an Ada procedure called
UnhandledExceptionTracer and is exported from ADA RTS package
present in Program Library.

Therefore, setting function EH means simply to perform a call to
Unhanded ExceptionTracer procedure.

It is important to consider that such function EH works from call
point to Unhanded Exception Tracer procedure and that therefore, only
from that moment onwards is it possible to get the tracing of
applications which are performed later on.

There are various ways to set such function EH.

You can either generate a program in LTL format to be performed before
any other application program, or generate an IPL program having as
Initial Program the procedure which performs call to
UnhandedExceptionTracer.

We report the simpler example, the generation of a unique LTL for the
following program:

with ADA RTS;use ADA RTS;
procedure TRACE is
begin
UNHANDLED EXCEPTION-TRACER;
end TRACE;

- fig.15 -

The execution of TRACE program LTL provides to set function EH
supplied by the implementation.

From now on all performed Ada application programs will be traced as
shown in figure 14.

.8

It is possible to imagine more complex situations than the above one
in which call to UnhandedException Tracer procedure can be inserted,
but the programmers greater effort consists
in detecting its application point in which tracing can be activated,
because it is only from that moment onwards that it can be
implemented.

8 Concurrency tracing

Support to the execution of Ada codified programs -ADA RTS- provides
a tracing pcrformance of points relevant to program tas7ing activity.

From now on, we will refer generically to these points calling them
synchronization points of global tasking programmed in the
application.

This service is performed with the output - on TRACER DEVICE path -
of text lines whose meaning and format is described in trace meaning
and trace structure sections.

TRACER DEVICE is defined in (SCL) product static configuration phase.

The availability of this path is necessary for this service to be
executed.

This is an optional service. Whether it is included or not in the
Initial Program of a MARA node, this service is ruled by means of
ADARTSTRACING further parameter of the above configuration.

8.1 Trace lines structure

A trace line is structured as follows:

<line> ::= <action> <task> in <entry> at <time> [for <delay>]

<action> :: Initialized program
Identified
Awaked
Slept
Timed slept
Deleting
Creating

Terminated program

<task> := <word>

<word> ::= <hex><hex><hex><hex>

<hex> ::= 0 1 1 1 ... I E I F

<entry> :: <identifier>:<address>

49

<identifier> ::= E INIT I E TERM I E CRET I EACTT I E ACTD
I E LVBL E LBKT E LVMB I E COMP I E DELY
I E CEUN ECETI iESLCT I EACPT I ESYNC
I E RVCO ERVFA EABRT I ESTSZ I E TRMD
I ECABL E ECNT iE TIDN I ECOMP I ECHLC
I ESGSZ ECHSS E ECOD

<address> ::= <word>

<time> <word><word>

<delay> : <word><word>

Example A:

Initialized program : OOOC

Identified OOOC in E COMP:072E at 005BlDE
Identified OOC in E TERM:1886 at 005B1242

Terminated program : OOOC

8.2 Trace lines meaning

The elaboration of an Ada text programming one or more of the
definitions described in chapter 9 of language manual, determines the
univocal identification of points in the text in which actions
described in that chapter must occur.

These actions are performed by Run Time System (RTS) from appropriate
procedures directly called by the compiled code, i.e. produced by Ada
compiler.

These procedures are dirctly performed by the task processing Ada text
at issue, and trace lines provide
<action><word> identification of that task.

When the tracing mechanism is present, these procedures trace the run
of the task in process outputting the above lines in orderto indicate
that the correspondig action is occurring.

Relevant events which are traced can be roughly classified in the
following groups:

• Task creation and activation
• Communication between tasks

Task dependences and termination
• Time management
• Task abnormal termination
• Tasks attributes

50

Some examples, pointing out the correspondence between a given Ada
text and a possible tracing which can be obtained through its
elaboration, are reported below.

The reader should carefully think about the term possible of the
previous statement, taking into account that tasking means parallel
executions .

For compactness reasons, Ada text can be replaced with the
corresponding syntactic nonterminator , as shown in language manual.

The Ada text examples are from the language manual.

The mark => indicates the beginning of the expected layout after the
elaboration of the previous text.

8.3 Example of Task declaration

task type keybord driver is
entry read(c out character);
entry write(c in character);

end;
teletype : keyborddriver;

Identified <task> in E CRET:<word> at <time>

8.4 Example of Task activation

A)
task resource is
entry seize;
entry release;

end;

procedure p is
a,b : resource;
c : resource;

begin
- A, b, c tasks are concurrently activated before the
- first instruction

Identified <task> in E ACTT: <word> at <time>

B)

type keyboard is access keyboard driver;
terminal : keyboard :- new keyboarddriver;

Identified <task> in E CRET:<word> at <time>

Identified <task> in E ACTT:<word> at <time>

51

C)

task body protectedarray is
table : array(index) of item := (index => null-item);

begin

Identified <task> in E ACTD:<word> at <time>

9 TASKING AND T1M HANDLING

9.1 REAL TIZ CLOCK Package
Provide for direct access to kernel Real Time Clock GetTime and

SetTime procedural services.

The Type TIME counts the milliseconds in a day.

TIME 10 package can be used to exchange the values of type TIME
objects with STANDARD INPUT and STANDARDOUTPUT. In case several tasks
need to perform concurrent GET or PUT requests, the provision of a
monitor task for TIMEIO package is recommended.

Example - REAL TIMECLOCK

With REAL TIMECLOCK; use REALTIMECLOCK;
with TEXT-IO; use TEXTIO;
procedure CLOCK is

I : INTEGER;
use TIMEIO;

begin
for I in 1..10 loop

PUT (PUTTIME);
NEW LINE;

end loop;
end;

10 ADABIO PRODUCT

It is the 10 support for the execution of Ada programs generated by
Ada-DDC compiler 4.3 and following versions.

This version is compatible with:

firmware v.4.0
genentry v.4.0
sc126 v.4.0
genrp v.4.0
genip v.4.0

52

abs286 v.3.0
ker286 v.4.0
io286 v.4.0
adarts v.1.0

and following versions.

In order to generate correctly this product, the following logic names
must be given to the directories described below:

ADABIOA0 containing ADABIO sources
ADABIOA1 containing ADABIO object modules

INTELAO containing INTEL factory modules

ADARTSA0 containing Ada Run Time Support modules
(ADARTS)

KER286AO containing Kernel modules

For additional information, refer to ADARTS PRODUCT.

11 Input Output Packages

11.1 Ada File Objects and Mara External Files

Note the difference between:

Object file: entity create by ADA program for I/O operation that
last until the program termination

. External file: ADA environment external entity that last
independently of the program and manage data to exchange

An Ada task can input or output Ada objects values from or towards
Mara external files only after that these are connecteu to adequate
Ada file objects declared in the program.

This connection can be operated with one of CREATE and OPEN primitives
defind by i/o packages provided by the implementation. Each CREATE
creates a new Mara file, and each OPEN opens a pre-existing file.

Given Mara external file bytes arrangement, the binary notation of
values output towards a Mara file is operated in terms of bytes.

At present, no other Mara external file organization is used by the
implementation for Ada objects values representation output towards
a Mara file.

In the three following sections, implementation choices, concerning
the representation of Ada objects values stored in Mara files with the
three Ada input output standard models, are detailed.

These models are specified in SEQUENTIALIO, DIRECTIO, and TEXTIO

53

packages (see [LRM 83] chapter 14).

11.1.1 Ada Sequential Files

An Ada sequential file is a set of single type objects values which
are accessible only by read operations according to a strict sequence
in consecutive file positions. A previous write operation allows the
creation of sequential files. These two modes are exclusive and cannot
co-exist at the same time. RESET operation permits to modify file
access by activating the transfers from the beginning of the file in
the new mode. Sequential files OPEN activates the transfers from the
beginning of the file.

This means that if it is a write open, the file previous contents are
lost. RESET operation in OUTFILE mode acts as a new output open from
the beginning of the file.

Therefore, file previous contents are lost. Reading sequential files
accessed through a CREATE
request is considered as wrong, and causes USEERROR exception
raising.

The number of Mara file bytes involved in a value recording is
determined by associed types binary notation length.

Given the existence of composite types - whose binary notation has a
width which is not statically known -, these types sequential files
record these values on a number of bytes dimensioned on the maximum
occupancy.

Example:

type index is range 1..10;
type anarray is integer array(index range <>);
package arrayio is new sequential_io(anarray);

Maximum width value for an AN ARRAY object corresponds to 10 integers.
An integer is represented by 16 bits. Thus, 160 bits are the width
used to represent this value. Therefore, Mara files created through
ARRAYIO package will record ANARRAY types objects values on 20 bytes.

a,b : an array : (1,2,3);
c,d : an_array := (1,2,3,4,5,6,7,8,9,0);
array_io. write (array_io. some file, a) ;
arrayio.write(array_io.some-file,c);
array_io. write (array_io. some-file,b);
arrayio. write (array_io. some7file, d) ;

At the end of this sequence, 80 bytes of Mara file associated to
ARRAY IO.SOME FILE will be occupied: the first 6 are significant, 14
are not significant, then 20 plus 6 are significant, 14 non
significant, and finally 20 are significant.

54

11.1.2 Ada Direct Files

An Ada direct file is a set of values of single type objects which are
accessible in reading or in writing in a file position selected by
an index in the interval 1 ..DIRECTIO.POSITIVECOUNT'LAST.

This index control is explicitly operable through appropriate
subprograms.

The index of the first element is 1, the last element one is file
length. Conventionally, 0 length files are empty.

When opened, a direct file places the current index at 1.

Direct files can be extended by placing the index beyond file current
size.

Unlike sequential files, direct files can be opened in INOUT mode, and
this allows to update the file without the need to close or activate
RESET operations.

11.1.3 Ada Text Files

An Ada text file is a set of pages which are a set of lines that, in
turn, are a set of characters. A text file characters, lines, and
pages can be selected by indexes ranging in the interval which goes
from 1 to an integer value which can be defined by means of
SETLINELENGTH and SETPAGELENGTH
subprograms.

The lines in a page, and the pages in a text file cannot exceed the
value TEXTIO.POSITIVECOUNT'LAST.

Ada TEXTIO includes the UNBOUNDED constant in order to handle text
file lines and pages with an unbounded number of characters per line,
and of lines per page.

Lines and pages are respectively separated by line terminators and
page terminators which are represented by control characters
sequences.
As to line terminator, the user can choose between <CR> and <CR,LF>
ASCII characters sequences, the one which is more appropriate to the
file at issue. This selection can be performed through the FORM string
when the file is opened or created (see [BIO]).

Page terminator is codified with the <FF> ASCII character.

Text files termination is identified because of the absence of
additional characters to be read. This means that:

• Read operations beyond the end of text files recorded on memory
devices (disks, tapes, etc.) raise ENDERROR exception.

Read operations addressed to communication lines - whose drivers do

55

not generate any signaling, for the communication session closing -
stop the application.

11.1.4 File Ada Objects Accessibility Criteria

It is necessary to observe that the piece of information output
towards a Mara file created by an Ada program is correctly interpreted
when read only if the following conditions are valid:

a) Use the same file model as the one adopted for writing;

b) As to generic models, instantiate with the same types as the
ones used for writing;

c) For unconstrained writing types, readings must operate
regularly with the same constraints .

Exceptions to rule b) are possible if SEQUENTIALIO and DIRECTIO are
used. In this case, the particular recording choice allows a direct,
or sequential access to single files positions which are respectively
sequential, or direct.

Obviously, these rules can be ignored when there is a total knowledge
of types representation. In this case, however, a reading operated in
terms of bytes, even if it is onerous, is realizable. It could be the
case of the check of files produced by non Ada programs, or by Ada
programs generated by language implementations which are different
from the one used for the reader programming.

11.1.5 External Files Name - [NAME]

NAME parameter defined by any CREATE or OPEN primitives has to report
a valid MARA path name.

Names indicating non-existent, or somehow illegal path servers cause
an appropriate exception raising.

Ada Temporary Files (see [LRMI ch. 14.2.1) associated to name
parameter null string, are associed to MARA File System work files.
As a consequence, they are codified with the :FMS:* string.

USEERROR exception is raised by NAME function invoking for an Ada
temporary file

11.1.6 Operating Modes On External Files - [FORM]

FORM parameter in CREATE and OPEN subprograms has been used by the
implementation in order to express a set of exchange modes which
characterize MARA files transfers.

56

The form string has the following sytax:

<form-parameter> <formmodality> (,<formmodality>)
<formmodality> : - <positiveform modality>

I <negative-formmodality>

<positive-formmodality>
LINE FOLDED
LINE EDIT
DOUBLE BUFFER
ECHO
TIHED
FULL DUPLEX
TERMINATOR
SHARE IN
SHAREOUT
SHAREINOUT

<negativeformmodality> ::= NO <positiveformmodality>

USE ERROR exception is raised if FORM string does not observes this

syntax.

Modes expressed in small letters are considered as illegal.

The various operating modes which can be expressed through the form
string, and the relative implementation behaviour are listed below.

11.1.6.1 Line Folding

It allows to select the line terminator coding.

It is feasible with the FORM string [NO]LINEFOLDED option.

NOLINE FOLDED value codifies the line terminator with <ASCII.CR>
control character.

LINE FOLDED value codifies the line terminator with
<ASCII.CR,ASCII.LF> control characters sequence.

11.1.6.2 Line Editing Mode

It allows the activation of the line editing as it is defined in
[SDD] for input modes. In addition, it allows the activation of page
terminator recognition codified by the implementation with the Form
Feed control character which corresponds to <ASCII.FF> code.
It is feasible with [NO]LINEEDIT option.

LINE EDIT value activates the SDD line edit , and deactivates the
page terminator recognition. NOLINE EDIT value activates the page
terminator recognition, and disactivates the SDD line editing

57

In LINE EDIT mode the input requests are terminated by line terminator
acknowledge. The TEXTIO.SKIP PAGE send the USEERROR exception and
"a page terminator never immediately follows a line terminator" is
assumed by the TEXTIO.SKIPLINE subprogram.

11.1.6.3 Character Icho

It allows the programming of the SDD driver for echo mode as it is
described in [SDD].

It is feasible through [NO]ECHO option.

11.1.6.4 Line Terminator

It allows the programming of the SDD driver for line terminator
recognition.

It is feasible through [NO]TERMINATOR option.

11.1.6.5 Character Full Duplex Exchange

It allows the programming of the SDD driver to exchange a character
in full duplex.

It is feasible through [NO)FULLDUPLEX option.

FULL DUPLEX option allows the output of one byte at most without
interrupting any read operations in progress.

11.1.6.6 Double Buffer Exchange Mode

It allows to uncouple exchange cycles at the two sides of the path
associated to the file by using two buffers which support the
exchange.

It is feasible through [NO]DOUBLEBUFFER option.

These buffers size is a parameter of the static implementation
configuration, and acts at node level.

11.1.6.7 External Files Sharing

It allows to specify what reading, writing, and updating modes can be
shared with the mode expressed by CREATE and OPEN subprograms MODE
parameter.

It is feasible through [NO]SHAREIN, [NO]SHARE_OUT, and
[NO]SHARE INOUT options.
It must be observed that this external file sharing control involves
various FILE TYPE objects use. These options have no effect on
contemporary accesses performed by various tasks to the external file

58

through the exclusive use of a single file type object. As to this
second problem, refer to Transportability notes section in this
paper.

An external file sharing, if it is not appropriately controlled, can
cause an unexpected sequencing of objects values stored in the file.
This is not necessarily a problem when this sequencing is unessential
(teletypes). On the other hand, it can be disastrous when a particular
piece of information position in the file is the access key to the
piece of information itself. As a consequence, a more careful use of
the FORM string compared with sharing options use is recommended.

11.1.6.8 Path Time Out

It allows to limit the waiting time related to OPEN and CREATE files
requests to the time value specified in BASIC_10_CONFIGURATION
package, i.e., to system default.

It is feasible through [NO]TIMED option.

Files whose access has been NOTIMED required, will activate a null
waiti.Ag.

- NOTE: Waiting time control on OPEN and CREATE requests exclusively
operates on Attach and Create path requests addressed to path
manager (see [KER]). Any waiting on the following path open request
is not included in waiting time required.

Waiting time handling on the path open depends on the path server
involved. Consequently, refer to the relative Mara documents.

The USEERROR exception is raised at time-out expired when a non
condivisible file access is attempt. The non condivisible condition
is imposed by previous access.

The USEERROR exception is raised also when a non multiuser path
server managed device access is attempt.

The DEVICEERROR exception is raised in all other cases.

11.2 TEXT_10 Standard Devices Control

Implementation associates TEXTIO.STANDARD OUTPUT and TEXT_10.
STANDARD INPUT to MARA files defined respectively by :CO: and :CI:
logic names. The relative physical name are required to the operating
system by means of ProcessParms primitive invoking (see [KER]
Process Management). This primitive returns to any parameters egment
passed by the activator agent in which these names will be compiled
in accordance with the modes described in [SPI].

59

The parameters buffer organization adopted by the implementation is

the following:

type pathname is new plm string;

type processbuffer is
record
reserved : pathmanagerheader;
progid : unsignedword;
spi buf id 1 byte;
spi-bufid2 : byte;
ci name : pathname;
ipname . pathname;
coname . pathname;
spi _buf_fac byte;
consoleinfo : plmstring;
end;

PATH NAME fields are organized in the memory as PLM-286 strings (see
[PLM]). The implementation interpretates these fields in the
succession previously mentioned. Thus, these fields position is
essential in order to associate correctly the path names to the
relative standard devices.

Spibuf id 1 and spibufid2 fields identify the process buffer type.
At present, only the buffer identified by the couple OFFH, 1 (or 9)
- which has the structure above shown - is supported.

Spi buffac field is not used, but it must be always present. It fills
8 successive memory bits (byte PLM-286).

CONSOLEINFO field is optional, and can be used to define again :CI:
and :CO: values, and to define the values which must be associated to
the two :FI: and :FO: strings that, in every respect, are the two
logic names of :CI: and :CO: format strings.

This field is a PLM string whose first byte reports - as a consequence
- the number of following characters included in the string. The
following characters sequence must observe the syntax below:

<consoleinfo> :C: [<stuff> I
- <consoletoken> { - <console-token> }
<terminator>

<stuff> ::= <sequence ofchar>

<console token> :: :CI:= <sequence of char>
I :CO:= <sequence of char>

:FI:= <sequence of char>
I :FO:= <sequence of char>

<sequence of char> ::- <ascii character>

<aecii character>)

<terminator> : ascii.cr ascii.lf

60

Mutual position of the various tokens is not essential. If a token is
present more times, the last instance is the one considered. The first
token is found immediatly after the first - met. Whatever follows
= until the next - , or at the end o the line, is considered part of
a <sequence of char>.

It is the Ada program activator agent to compile such information in
the parameters segment, and pass it then to application according to
modes described in [KER] program loader.

In case Mini Session Monitor (see [MSM]) is an Ada program activator
agent, CONSOLE INFO field reports, according to described modes,
command tail which accompanies program activation request. Such field
can be used, therefore, to redefine path names associated to :CI: AND
:CO: and relative form string.

CONSOLE INFO field absence in the parameters segment associates to
:FI: and :FO: form string, system
values defined through BASICIO generic package.

The absence of parameters segment or its erroneous compilation cause
NAMEERROR exception to be raised.

Such exception is handled during TEXT 10 package processing allowing
program processing continuation. In such circumstances the use of
subprograms operating on default files cause STATUSERROR exception
to be raised. Consequently, the use of DEFAULDEVICES generic package
is recommended which
allows to associate, to default devices, devices or files defined by
the user.

Some examples of Ada programs invocation operated through Mini Session
Monitor follow.

MY.LTL -:CI:=:FMS:MARALAB/COMMAND.CCC-:FI:=NOSHAREOUT
YOUR.LTL -:FI:=SHAREOUT-:FO:=NOTIMED

MY.LTL invocation addresses TEXT IO.STANDARD INPUT to
:FMS:MARALAB/COMMAND.CCC. file Form string for such input prevents
TEXT IO.OUT FILE mode application on such file.
TEXTIO.STANDARDOUTPUT will be defined by Mini Session Monitor
policies, while the relative form string is defined by current system
default through generic BASICIO.

YOUR.LTL invocation allows to share output on the path associated by
MSM to :CI:, and not to require path timeout for access to :CI:. Such
paths are defined by MSM policies, and they typically coincide with
the terminal from which program activation is required.

11.3 I/O Package Specifications

The specifications of the standard I/O packages follow:

11.3.1 10IXCEPTIONS

61

-- Date 20 April 1983

-- Programmer Peter Haff

-- Project Portable Ada Programming System

-- Module 10 EXCPS.ADA

-- Description Specification of package 10 EXCEPTIONS.
-- RM section 14.5.

-- Changes Initial version 20 April 1983

-- DDC-I Ada (R) Compiler System (TM)
-- Copyright (C) 1984
-- DDC International A/S
-- All Rights Reserved
- - TO BE TREATED IN CONFIDENCE

-- (R) Ada is a registered trademark of the U.S. Government,
-- Ada Joint Program Office.

-- (TM) DDC-I Ada Compiler System is a trademark of DDC International
A/S.

--

pragma page;

package IOEXCEPTIONS is

-- The order of the following declarations must NOT be changed:

STATUS ERROR : exception;
MODE ERROR : exception;
NAME ERROR : exception;
USE ERROR : exception;
DEVICE ERROR : exception;
END ERROR : exception;
DATA ERROR : exception;
LAYOUTERROR : exception;

end IO EXCEPTIONS;

11.3.2 BASIC_10_TYPES

--

62

-- Date 19 March 1986

-- Programmer Knud Joergen Kirkegaard

-- Project DDC Ada Compiler System
-- VAX-Il hosted

-- Module BASICIOTYPES (spec)

-- Description Ada Input-Output System for VAX/VMS

-- Associated Documents:
-- DDC 5118/RPT/20, issue 2
-- DDC 118/RPT/13, issue 4

-- For Ada releases >= *.*

-- Changes Initial version 19 March 1986

-- Copyright 1986 by Dansk Datamatik Center (DDC).
-- This program as well as any listing thereof may not
-- be reproduced in any form without prior permission
-- in writing from DDC.

pragma page;

with system;

package basic io types is

subtype io kind is integer;

-- io kind is used in the create and open procedures and indicates:
- - 0 : sequential file
- - 1 : direct file
-- 2 : text file
- - 3 : variable file (this is not used by the standard

packages)

type filemode is range 0 .. 2;

-- file mode indicates the mode of the file:
-- for sequential and text files:
-- 0 : in file
-- 1 : out file

-- for direct and variable files:
-- : in file
-- 1 : inout file
-- 2 : out-file

subtype key is long_integer;

63

-- key is used by variable i/o to indicate the position in a file

-- this may be implementation dependent

type filetype is access integer;

type count is range 0 .. long_integer'last;

subtype positivecount is count range 1 .. count'last;

subtype pointer is system.address;

-- pointer is used in the read and write procedures to indicate a
data area

end basic io types;

11.3.3 TEXT 10

-- Date 31 October 1983

-- Programmer Soeren Prehn (, Knud Joergen Kirkegaard)

-- Project Portable Ada Programming System
- - Input -Output

-- Module TEXTIOS.ADA

-- Description Specification of Package TEXT_10,
-- Ada LRM (jan 83) 14.3.10

-- Changes Initial version 31 October 1983
- - Adapted to KAPSE interface specification 17 April
1986

-- DDC-I Ada Compiler System (TM)
-- DACS for VAX/VMS
-- DDC-I PROPRIETARY INFORMATION:
-- Copyright (C) 1984 DDC International A/S.
-- All rights reserved. This material contains unpublished
-- trade secret information from DDC International A/S.
-- TO BE TREATED IN CONFIDENCE

-- (TM) DDC-I Ada Compiler System is a trademark of DDC International
A/S.

pragma page;
with BASICIOTYPES;

64

with 10_EXCEPTIONS;

package TEXTIO is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

type COUNT is range 0 .. LONG INTEGER" LAST;
subtype POSITIVECOUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

subtype FIELD is INTEGER range 0 .. 67; -- max. size of
an integer output field

-- 2#$....

subtype NUMBERBASE is INTEGER range 2 .. 16;

type TYPESET is (LOWER CASE, UPPERCASE);

pragma PAGE;
-- File Management

procedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE : OUTFILE;
NAME : in STRING fill

FORM : in STRING : ""

procedure OPEN (FILE : in out FILETYPE;
MODE : in FILEMODE;
NAME : in STRING;
FORM : in STRING : ""

procedure CLOSE (FILE : in out FILE TYPE);
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (FILE : in out FILETYPE; MODE in FILE MODE);
procedure RESET (FILE : in out FILE TYPE);

function MODE (FILE : in FILETYPE) return FILE MODE;
function NAME (FILE : in FILETYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

pragma PAGE;
-- Control of default input and output files

procedure SET INPUT (FILE : in FILETYPE);
procedure SET_OUTPUT (FILE : in FILE_TYPE) ;

function STANDARD INPUT return FILE TYPE;
function STANDARDOUTPUT return FILETYPE;

function CURRENT INPUT return FILE TYPE;
function CURRENT OUTPUT return FILETYPE;

65

pragma PAGE;
-- specification of line and page lengths

procedure SETLINELENGTH (FILE : in FILETYPE; TO : in COUNT);
procedure SET-LINE-LENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILETYPE; TO : in COUNT);
procedure SETPAGELENGTH (TO : in COUNT);

function LINELENGTH (FILE : in FILETYPE) return COUNT;
function LINELENGTH return COUNT;

function PAGE LENGTH (FILE : in FILETYPE) return COUNT;
function PAGELENGTH return COUNT;

pragma PAGE;
-- Column, Line, and Page Control

procedure NEW LINE (FILE in FILETYPE; SPACING : in
POSITIVECOUNT := 1);

procedure NEW LINE (SPACING : in
POSITIVECOUNT := 1);

procedure SKIP LINE (FILE in FILE-TYPE; SPACING : in
POSITIVECOUNT :- 1);

procedure SKIP LINE (SPACING : in
POSITIVECOUNT := 1;

function END OF LINE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEW PAGE (FILE : in FILETYPE);
procedure NEWPAGE

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIP-PAGE

function END OF PAGE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function END OF FILE (FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFFILE return BOOLEAN;

procedure SETCOL (FILE in FILE-TYPE; TO : in
POSITIVECOUNT);

procedure SETCOL TO : in
POSITIVECOUNT);

procedure SETLINE (FILE in FILETYPE; TO : in
POSITIVECOUNT);

procedure SETLINE TO : in
POSITIVECOUNT);

function COL (FILE in FILETYPE) return
POSITIVECOUNT;

function COL return

66

POSITIVECOUNT;

function LINE (FILE : in FILE-TYPE) returnPOSITIVE COUNT;
function LINE return

POSITIVECOUNT;

function PAGE (FILE : in FILE-TYPE) return
POSITIVE COUNT;

function PAGE return
POSITIVECOUNT;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE : in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILETYPE; ITEM : in CHARX"TER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILETYPE; ITEM : out STRING);
procedure GET (ITEM : out STRING);
procedure PUT (FILE : in FILETYPE; ITEM : in STRING);
procedure PUT (ITEM : in STRING);

procedure GETLINE (FILE : in FILETYPE; ITEM : out STRING; LAST
: out NATURAL);

procedure GETLINE (ITEM : out STRING; LAST
: out NATURAL);

procedure PUT LINE (FILE : in FILETYPE; ITEM : in STRING);
procedure PUT-LINE (ITEM : in STRING);

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGER 10 is

DEFAULT WIDTH : FIELD : NUM' WIDTH;
DEFAULT-BASE : NUMBER BASE : 10;

procedure GET (FILE in FILETYPE; ITEM out NUM; WIDTH :
in FIELD :- 0);

procedure GET (ITEM out NUM; WIDTH :
in FIELD :- 0);

procedure PUT (FILE in FILE TYPE;
ITEM in NUM;-
WIDTH in FIELD :- DEFAULT WIDTH;
BASE in NUMBER BASE :- DEFAULT BASE);

procedure PUT (ITEM in NUM;
WIDTH in FIELD :- DEFAULTWIDTH;

67

BASE in NUMBERBASE :- DEFAULTBASE);

procedure GET (FROM in STRING; ITEM out NUM; LAST out
POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBERBASE := DEFAULTBASE);

end INTEGER 10;

pragma PAGE;
-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO is

DEFAULT FORE : FIELD : 2;
DEFAULT AFT : FIELD : NUM'DIGITS - 1;
DEFAULTEXP : FIELD : 3;

procedure GET (FILE : in FILETYPE; ITEM out NUM; WIDTH : in
FIELD := 0);

procedure GET (ITEM out NUM; WIDTH : in
FIELD := 0);

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
FORE : in FIELD : DEFAULT FORE;
AFT : in FIELD :- DEFAULT AFT;
EXP : in FIELD = DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD : DEFAULT FORE;
AFT : in FIELD :- DEFAULT AFT;
EXP : in FIELD : DEFAULTEXP);

procedure GET (FROM : in STRING; ITEM : out NUM; LAST out
POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

end FLOAT_10;

pragma PAGE;
generic

type NUM is delta <>;
package FIXEDIO is

DEFAULT FORE : FIELD : NUM'FORE;
DEFAULT-AFT : FIELD :-NUM'AFT;
DEFAULTEXP : FIELD : 0;
procedure GET (FILE in FILETYPE; ITEM out NUM; WIDTH in

FIELD :- 0);

68

procedure GET ITEM : out NUM; WIDTH : in
FIELD :- 0);

procedure PUT (FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD :- DEFAULTFORE;
AFT : in FIELD := DEFAULTAFT;
EXP : in FIELD :- DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULTFORE;
AFT : in FIELD DEFAULTAFT;
EXP : in FIELD := DEFAULT_EXP);

procedure GET (FROM in STRING; ITEM : out NUM; LAST out
POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD : DEFAULT AFT;
EXP : in FIELD = DEFAULT_EXP);

end FIXEDIO;

pragma PAGE;
-- Generic Package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATION_10 is

DEFAULT WIDTH : FIELD := 0;
DEFAULTSETTING : TYPESET := UPPERCASE;

procedure GET (FILE in FILETYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE in FILETYPE;
ITEM in ENUM;
WIDTH in FIELD :- DEFAULT WIDTH;
SET in TYPESET = DEFAULT_SETTING) ;

procedure PUT (ITEM in ENUM;
WIDTH : in FIELD : DEFAULT WIDTH;
SET : in TYPE-SET : DEFAULTSETTING);

procedure GET (FROM in STRING; ITEM : out ENUM; LAST out
POSITIVE);

procedure PUT (TO out STRING;
ITEM in ENUM;
SET in TYPE-SET :- DEFAULTSETTING);

end ENUMERATIONIO;

pragma PAGE;
-- Exceptions

69

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames I0 EXCEPTIONS.NAMEERROR;
USE ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO EXCEPTIONS.END ERROR;
DATA ERROR : exception renames IO EXCEPTIONS.DATA ERROR;
LAYOUTERROR : exception renames IEXCEPTIONS.LAYOUTERROR;

pragma page;
private

type FILEBLOCKTYPE is new BASIC_10_TYPES.FILETYPE;

type FILEOBJECTTYPE is
record

IS OPEN : BOOLEAN :- FALSE;
FILE BLOCK : FILEBLOCK TYPE;

end record;

type FILETYPE is access FILE OBJECTTYPE;

end TEXTIO;

11.3.4 SZQUXNTIAL_10

-- Date 20 April 1983

-- Programmer Peter Haff (, Soeren Prehn, Knud Joergen Kirkegaard)

-- Project Portable Ada Programming System

-- Module SEQIOS.ADA

-- Description Specification of package SEQUENTIALIO.
-- LRM (Jan 83) section 14.2.3

-- Changes Initial version 20 April 1983

-- DDC-I Ada (R) Compiler System (TM)
-- Copyright (C) 1984
- - DDC International A/S
-- All Rights Reserved
- - TO BE TREATED IN CONFIDENCE

-- (R) Ada is a registered trademark of the U.S. Government,
-- Ada Joint Program Office.

-- (TM) DDC-I Ada Compiler System is a trademark of DDC International
A/S.

70

pragma PAGE;

with 10 EXCEPTIONS;
with BASICIOTYPES;

generic

type ELEMENTTYPE is private;

package SEQUENTIALIO is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE : OUT FILE;
NAME : in STRING :- "" "

FORM : in STRING :m "");

procedure OPEN (FILE : in out FILETYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE MODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function IS OPEN(FILE : in FILE-TYPE) return BOOLEAN;

pragma PAGE;
-- input and output operations

procedure READ (FILE : in FILETYPE;

ITEM : out ELEMENTTYPE);

71

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENT_TYPE);

function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;

pragma PAGE;
-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE_ERROR : exception renames IOEXCEPTIONS.MODE_ERROR;
NAME ERROR : exception renames IO0EXCEPTIONS.NAME_ERROR;
USE ERROR : exception renames IOEXCEPTIONS.USEERROR;
DEVICE ERROR : exception renames 10 EXCEPTIONS.DEVICEERROR;
END ERROR : exception renames 10 EXCEPTIONS.END ERROR;
DATAERROR : exception renames IOEXCEPTIONS. DATAERROR;

pragma PAGE;
private

type FILETYPE is new BASICIOTYPES.FILETYPE;

end SEQUENTIALIO;

11.3.5 DIRECT10

--

-- Date 20 April 1983

-- Programmer Peter Haff (,Soeren Prehn, Knud Joergen Kirkegaard)

-- Project Portable Ada Programming System

-- Module DIR IO.ADA

-- Description Specification of package DIRECTIO.
-- LRM (jan 83) section 14.2.5.

-- Changes Initial version 20 April 1983
-- 31 OCT 1983: FILE TYPE made private. /SP

21 ffarch 1986: Adapted to KAPSE interface
specification.

-- DDC-I Ada (R) Compiler System (TM)
-- Copyright (C) 1984
-- DDC International A/S
-- All Rights Reserved
-- TO BE TREATED IN CONFIDENCE

-- (R) Ada is a registered trademark of the U.S. Government,
-- Ada Joint Program Office.

72

- - (TM) DDC-I Ada Compiler System is a trademark of DDC International
A/S.

pragma PAGE;
with 10 EXCEPTIONS;
with BASIC 10 TYPES;

generic

type ELEMENTTYPE is private;

package DIRECT_10 is

type FILETYPE is limited private;

type FILEMODE is (INFILE, INOUTFILE, OUTFILE);

type COUNT is range 0..LONGINTEGER'LAST;
subtype POSITIVECOUNT is COUNT range 1..COUNT'LAST;

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE :- INOUTFILE;
NAME : in STRING
FORM : in STRING

procedure OPEN (FILE : in out FILETYPE;
MODE : in FILEMODE;
NAME : in STRING;
FORM : in STRING := ");

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE (FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILE MODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

73

pragma PAGE;
-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE;
FROM : in POSITIVECOUNT);

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE;
TO : in POSITIVE COUNT);

procedure WRITE (FILE in FILE TYPE;
ITEM : in ELEMENTTYPE);

procedure SETINDEX(FILE : in FILE TYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILE TYPE) return POSITIVECOUNT;

function SIZE (FILE : in FILE-TYPE) return COUNT;

function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;

pragma PAGE;
-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IOEXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames 10 EXCEPTIONS.NAMEERROR;
USE ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATAERROR : exception renames IOEXCEPTIONS.DATA_ERROR;

pragma PAGE;

private

type FILETYPE is new BASICIOTYPES.FILETYPE;

end DIRECTIO;

12 Basic I/O configurability

The present section lists configurability elements of Ada basic I/O
support defined by BASIC LEXICALIO, BASICTEXTIO and BASICCOMMONIO
packages (see [UserGuide]).

As basic I/O directly supports Ada standard I/O, configurabily
features described here can be transitively transported to standard
I/O context.

74

Support configurability concerns control of system resources committed
for a Mara file access, as well as control of access modaes to a file
expressed by FORM string (see [BIO]).

Both control types are feasible both at single program level and at
system level. The latter acts as default for program level.

Program configurability is feasible through generic packages listed
below. Such library units specification is reported in Appendix A.

System configurability is expressed both through SCL language, in
ADABIO factory product
description (see [ADABIO]), and through the use of BASICIO generic
package.

12.1 Program Configurability

Ada basic I/O support presents some configurability characteristics
that application program can control using BASIC 10CONFIGURATION,
DEFAULTFORM and DEFAULTDEVICES generic packages.

12.1.1 DEFAULTDEVICES Generic Package

[...] details choices operated by the implementation in associating
appropriate external files to TEXT IO.STANDARD INPUT and
TEXT IO. STANDARD OUTPUT standard devices and therefore to default ones
(see [LRM] ch 14.3]. In case system choices are not applicable, the
user can provide new values to default devices through DEFAULT-DEVICES
generic package.

Such values act at application program level. Other node programs are
not influenced by the new choice.

with default devices;
package my_devices is new defaultdevices (
outputname => :D:0007
inputname => :D:0007
inputform => SHARE OUT ,
outputform => NOTIMED);
with mydevices;
procedure my_program is ... end;

The example shows a possible use of such generic, operated at program
library level.

After instantiation of such package has been processed, :D:0007 path
name refers to device to be used as current default input and
current default output . As regards input form string, it is allowed
to share output mode. As regards output form string, a null wait is
required on relative attach path request.

If such package is istantiated more times within a program, effective
choice will depend on processing order fixed by compiler and linker
of the various instantiations (see [LRM] ch. 10), according to

75

programmed
dependence between the various program units.

NOTE: The use of such generic is useful only when
TEXTIO.STANDARDINPUT and TEXTIO.STANDARD OUTPUT correspond to no
external file. This occurs in case of absence or erroneous
compilation of parameters segment passed to an Ada application main
program by environment agent that this activates.

DEFAULT DEVICES instantiation in presence of parameters segment,

corresponds to a no operation to the full.

In other terms, DEFAULTDEVICES:

- prevents TEXTIO.STANDARD INPUT and TEXT IO.STANDARD OUTPUT
modification. These files are always associated-to :CI: and :CO:,
whatever their value is;

--- prevents TEXT IO.CURRENT INPUT and TEXT IO.CURRENT OUTPUT
redirection on new default values whenever current defaults are
associated to some external file.

If TEXT IO.CURRENTINPUT and TEXT IO.CURRENTOUTPUT redirection is
needed, you are invited to use TEXTIO relative subprograms
explicitly.

12.1.2 DEFAULTFORM Generic Package

An application user can arrange default values limited by program
context through DEFAULTFORM generic package use.

with default form;
package my form is new default-form (DOUBLEBUFFER &
,LINE FOLDED &
,NOLINE EDIT &
,SHAREIN &
,NOSHARE OUT &
,NOSHAREINOUT &
,ECHO &
, TERMINATOR, &
,TIMED);

with my_form:
procedure myprogram is ... end;

The example shows a possible use of such generic, operated at program
library level.

After such package instantiation has been processed, the indicated
string value replaces previous values defined by previous
instantiations, that is system ones.

If such package is instantiated more times within a program, effective

76

choice will depend on various instantiations processing order
established by compiler and linker (see [LRM] ch. 10), according to
programmed dependences between the various program units.

12.1.3 BASIC_10_CONFIGURATION Generic Package

BASICIOCONFIGURATION generic package allows to fix the following
quantities in the program context:

- increase with respect to the current value of connections number
to be operated towards external files: NUMBER OF FILES;

time, expressed with CALENDAR.DAY DURATION typology, you are ready
to wait for on OPEN or CREATE requests to complete them: TIME OUT.
value of exchange buffers width on accessed files: BUFFERSIZE.

with basicioconfiguration;
package my_configuration is basic io configuration
buffer size => 3000;
time out => 120.0;
number of files; => 15)

The example indicates to process with maximum 15 files which are
opened contemporarily. As support memory to the fifteen connections
is accorded by Kernel and paged up with 128 storageanits pages, and
as connection unitary support is not commensurable with 128, it may
occour that a higher number of files be actually opened.

To allocate necessary support memory, implementation adopts the
minimum number of segments. Such segments are required together with
those OPEN and CREATE requests which exhaust current segment.

New segments request is disabled beyond the limit declared by
BASIC 10 CONFIGURATION package instantiation. In this circumstance,
STORAGE ERROR exception is raised on request of extra-connections with
respect to declared ones.

Segment unavailability causes STORAGE-ERROR exception to be raised
even below the declared limit.

A careful use of such package allows to dimension memory segments
width at best on grounds of requisites declared by an application
program, though it does not ensure memory availability which is
however necessary to support the number of required connections. So
you are encouraged to use it !

The other parameters require a waiting time which does not exceed two
minutes for each access request on a MARA file as well as a 3000
storage units wide exchange with buffer.

Processing order will decide which values will be active between one
instantiation and the following, as for the other generic supports in
case of multiple instantiations of such package.

77

Generic package specification does not provide default values.
Therefore, it is necessary to define a complete triple for the three
parameters on each instantiation, otherwise it is impossible to
compile the instantiation.

12.2 Static Configurability

12.2.1 DATA clause

Though DATA clause of SCL description of support to Ada basic i/o (see
[ADABIO]), it is possible to dimension default values for parameters
defined by BASIC_10_CONFIGURATION package.

DATA RTS.OBJ
MAX NUMBER OF FILES = WORD P NUMBEROFFILES;
MIN-TIME OUT LOW = WORD P-TIMEOUTLOW;
MIN-TIME-0UT--HIGH = WORD P-TIMEOUTHIGH;
SIZE OF_BUFFERS = WORD P-BUFFER$SIZE;

END DATA;

INVOKE ADABIO (13,0000,7H,2500) REPEATED;

The example shows a static configuration which will afford access to
no more than 13 contemporary connections to MARA files for each
program executed in the node. Each connection will be temporized
for no more than 7 * 2 exp (16) microseconds. The buffers exchanged
on each connection will be 2500 storageunits (word) wide.

The use of BASIC 10 CONFIGURATION package allows to replace program
defaults with system values expressed by DATA clause.

The following unitary commitment of system resources for dimensioning
of PNUMBEROFFILES parameter must be considered:

1 path;

2 path mailboxes;

1 + x path buffers with x in 1. .2 according to single or double
buffer operation;

about 70 local or nodal bytes + 22 nodal bytes;

Nodal bytes will be really such for nodes having nodal memory. On the
contrary, they will be summed to those required by local memory.

12.2.2 BASIC 10 Generic Package

78

BASIC IO generic package allows to configure ADABIO product with
respect to form tail value, which must act as system dfault, and with
respect to format tail value which must act for files referred by :CI:
and :CO: logic names, to which implementation associates
TEXTIO.STANDARDINPUT and TEXTIO.STANDARDOUTPUT.

with basic io;
package fi-configuration is new basic io;

with basicio;
package userconfiguration is new basic-io

(form -> NODOUBLEBUFFER &
,LINE FOLDED &
,NOLINE EDIT &
,NOSHARE IN &
NOSHARE OUT &
,NOSHAREINOUT &
,ECHO &
,TERMINATOR &
,TIMED &
ci-form -> NOSHARE OUT
co-form => TIMED).

In the first example, reconfiguration package configures basic io
support accepting generic default values (see app. A).

In the second case userconfiguration package configures support,
assigning, as system default, the following operating modalities:

- double buffer modality

- files will be line-editable

- their line terminator will be codified with <cr,lf),

- no sharing form will be possible,

- echo on input operations will be operated

- line and page terminator will be recognized

- access requests will be subdued to time out.

Once chosen configuration has been compiled, it can be installed in
the node generating an Ada program on it, whose SCL specification
describes an invoked type program (see [GENRP]).

An example of the system generation related to BASIC_10 configuration
is described below.

79

Ada text, contained in NODALELABORATION.ADA

with basicio;
package fi_configuration is new basic_io;

with fi configuration;
procedure nodalelaboration is
begin

null;
end;

SCL text, contained in MYSYS.SCL

program template NodalElaboration large

code PRIVATE
data PRIVATE NODAL;

module : FMS :ADARTSAI/RTSDATA.OBJ relocatable;module :FMS :ADABIOAl/BIODATA. OBJ relocatable;module :NodalElaboration relocatable;module :FMS :DACS86AO/ROOT. LIB relocatable;module : FMS :DACS86A0/RTHELP286. LIB relocatable;module :FMS :KER286AO/ADAUS. LIB
relocatable;
module :FMS :ADABIOA1/BINDER286.LIB relocatable;module :FMS :ADARTSAl/BINDER286. LIB relocatable;module GATELBA relocatable;

initial procedure NodalElaboration
stacksegment nodal size = 2000H;

end program;

function adacontainer
privilege 2
function segment 100
maxpriorilty 7
initial program nodalelaboration;

invoke nodal elaboration;
invoke adabio repeated;

end function;

80

DCL text

$ SCL 286 MYSYS.SCL

$ ADA286/LIBRARY - MY ALB.ALB ADABIOAO:NODAL ELABORATION.ADA
$ ASSIGN/NOLOG MYSYSoGRA ADA286_GRAPH
$ ASSIGN/NOLOG NODALELABORATION.LNK NODAL ELABORATION
$ ADA286/LINK/LIBR -=MY ALB.ALB/OFD-[] / TEMPLATE
NODALELABORATION

$ GENIP MYSYS.GRA ASSIGN NODALELABORATION=NODAL ELABORATION.LTL
$ ABS286 MYSYS.IPL

Such command sequence will deposit NODAL ELABORATION.LTL file in
current directory, which together with the other programs described,
will represent the system initial program.

During initialization phase, kernel initialization process will
activate nodal elaboration program, which has been declared function
initial program in the present example.

At the end of this elaboration the function will be declared ready
through a non visible call of SETFUNCTION READY kernel procedure.
The continuation of system initialization is than possible.

12.3 Basic I/O Intrinaic Limits

Lexical elements reading requests through TEXT_10 generic subprograms
cannot exceed 128 characters.

13 [BIO] INPUT OUTPUT HANDLING

13.1 Devices handled by SDD AND SDS

SDD and SDS (see [SDD],[SDS]) classify devices into three

conventional classes:

* teletype;

* printer;

81

* video;

Teletype typology is used for host computers and terminals input and
output connections.

Printer typology provides for host computers and printers only output
connections.

Video typology provides for video terminals handling able to organize
information according to predetermined masks.

Of the three devices classes, video class is the only one which cannot
suitably correspond to any of the three standard models provided by
the language.

Such limitation is essentially due to positional information
organization on video device and to the typological variety of objects
that can be exchanged with it. Textio and directio models mix seems
to be therefore the best model to control conventional videos. To
define such mix lies outside the scope of this document.

Both Ada text and Ada sequential files are useful to model the
exchange with teletype and printer type interactive devices and host
computers.

Independent of the file model chosen, various read options control
towards conventional teletypes defined in [SDD] is feasible
exclusively by using the following form string modes:

0 [NO]TERMINATOR;

0 [NO] LINEEDIT;

0 [NO]LINEFOLDED;

* [NO]ECHO;

* [NO]DOUBLEBUFFER;

In the following two sections some guide notes and examples are
reported which allow to use form string for an interactive devices and
host computers efficient control through Ada file standard models.

13.1.1 Interactive Devices

Ada text files are the most suitable and flexible model to control
teletype and printer type devices connected respectively to terminals
and physical printers.

Suitability depends on the nature of such devices exchanging an
information which is structured in itself
on character basic typology in ASCII coding.

Flexibility depends on the presence of INTEGER_10, EUMERATIONIO,
FLOATIO and FIXED_IO packages which allow on the one hand to output

82

integer, enumerative and real type values in the ASCII format, that
is directly interpreted by the device; on the other hand to input
directly from the device integer, enumerative and real values,
subdueing them to language lexical control.

Such flexibility is paid with less efficient exchanges with respect
to exchanges based on more elementary character or string types.
Anyway, exchanges of this kind compel to use less structured types and
therefore less powerful operators, which finally lead to a less
compact and therefore less efficient code.

A conventional teletype associated to an interactive device supports
characters line concept, allowing to complete input operations to
identify a terminating sequence defined during activation of
associated peripheral device. Such performance is directly feasible
through TERMINATOR modes in form string.

According to layout handling needs of a text file generated by an
interactive device, implementation allows, through LINE EDIT option
(see [FORM]), to read towards SDD and SDS or in the so called line
edit mode, or in transparent reading mode with terminator (see
[SDD]).

In line edit mode, conventional teletypes are not able to generate
text file layout, essentially for two reasons.

First because any control character generated by the device and
different from those used to carry out
line edit functionalities, is removed from SDD driver. Ascii.ff

character will never be brought back from SDD to an application
software.

Secondly because of an automatic line scrolling operated on the last
video device useful line with no signal interpretable as page closing
corresponding to it in the device itself.

This implies that SKIPLINE service implementation, in such devices
operated according to line edit modes, can omit actions relative to
identifiaction of a possible page terminator immediatly following line
terminator. This ensures a device wait limited to identification of
line terminator alone.

If it is necessary to use an interactive device to generate a page
text file, NOLINE EDIT mode can be requested. In such mode,
implementation reads towards device in transparent with terminator
mode. In this situation, SKIPLINE and SKIP PAGE reactivate ascii.ff
character identification, questioning the device for a further
character after a line terminator in the case of SKIPLINE, or of
ascii.ff character in the case of SKIPPAGE.NOTE.

Because of further activated waits, one can think that implementation
behaviour is wrong. This is not true. Such behaviour is expected in
this kind of input towards conventional teletypes which are
interactive devices.

83

13.1.2 Connections Towards Host Computer

Both text files and sequential files can be used to control the input
of a conventional teletype connected to a host computer.
Ada sequential files are the most suitable models to exchange with the
outside in case character type
is not the base of the exchange.

As in the previous case, also in these circumstances input control is
feasible through form string modes.

This implies to terminate these requests only when bytes number
collected by the device is the same as the size of instantiated type
binary representation.

Omitting identification of page terminator can be penalized when
teletype characterization is used to handle serial communication
lines connected to host computers. In these cases implementation
allows to restore in SKIP LINE page terminator recognition through
FORM string LINE EDIT qualifier (see Selectic. of external files
attributes) .

13.2 Devices Handled By Real Time Protocol

Not supported

13.3 Basic Types

In the STANDARD package, the following types are defined:

- INTEGER - on 16 bits, its range is -32768..32767

- LONG INTEGER = on 32 bits, its range is
-2147483648.-.2147483647

From the point of view of the admitted values range, to these types
respectively correspond - in Ada/Digital - the types:

SHORT INTEGER
INTEGER

For this reason, it would be better not to use standard definitions
but to define some new types which are made to correspond to equal
representations in the two implementations; what said can be extended
to NATURAL and POSITIVE subtypes.

Predefined types FLOAT and LONG FLOAT are represented respectively
with 6 digits on 32 bits and with 15 digits on 64 bits.

This representation coincides to the ADA/Digital one for the types
with the same name.

84

III~l|Im WMim BiBMW

To obtain the transportability on MARA, in Ada/Digital you must not
use:

the LONG LONG FLOAT type (33 digits on 128 bits) which has not an
equivalent in-our compiler

the LONG FLOAT pragma which originates a different representation
for LONGFLOAT objects (15 digits on 64 bits)

The generic FLOAT MATHLIB ([MATH]) package which is present at the
first level of Mara program library, can be implemented with FLOAT,
LONGFLOAT types or with types derived from them.

In conclusion, to assure the transportability between these two
systems, it is advisable to define and use the following BASICTYPES
package:

package BASICTYPES is

type INTEGER 16 is new INTEGER; - - For
DDC

type INTEGER 32 is new LONGINTEGER; - - For DDC
type INTEGER 16 is new SHORT-INTEGER; For DEC
type INTEGER 32 is new INTEGER; - - For DEC

subtype NATURAL 16 is INTEGER 1C range 0..INTEGER 16LAST;
subtype NATURAL_32 is INTEGER_32 range 0..INTEGER_32LAST;

subtype POSITIVE 16 is INTEGER 16 range 1..INTEGER 16LAST;
subtype POSITIVE_-32 is INTEGER_32 range 1..INTEGER_32LAST;

type FLOAT_32 is new FLOAT; - - For
DEC & DDC

type FLOAT_64 is new LONGFLOAT;

end BASICTYPES;

However, it is recommended to do no assumption on how a certain type
(particularly if complex) of objects are memory represented, and, if
needed, to resort to explicit representation clauses.

13.4 Acla/DDC programs sementing.

An Ada/DDC program may have a certain number of associated
data-segments, each if them corresponding to a program-library level.
Objects declared in a library package or in a package that, in any
case, is not contained in a subprogram declaration (but in another
package) and which are at that library level take up room in a
data-segment of a given level.

The maximum dimension of each data-segment is 64 k-bytes; this value
imposes a limit to the quantity and to the dimension of the objects
which are allocated in it.

85

We define as library tasks the tasks whose declaration (in case of the
only type) immediately appears inside a library package, or inside a
package which is directly inside a library package and so on; after
a point of this type is defined as a 0 level point.

To each of these tasks, a memory segment is dynamically associated;
in this segment, this task stack is allocated togheter with the stacks
of all the others tasks depending on it ([LRM 83], par. 9.4).

The main-task handling is similar to that of library tasks.

The dimension of the memory segment associated to the main-task is
fixed to the moment of the program generation by means of the
stacksegment size SCL directive ([SCL]). On the contrary, for a
library task it can be fixed by means of the SETCHILDSEGMENTSIZE
function recall ([APX A - ADARTSJ);

In case of lack of this one, the dimension of the task segment
processing its declaration, or performing its dynamic allocation is
used (through new).

The stack dimension of a task can be fixed by means of a length clause
([LRM 83], par. 13.2); and the main-task one through the option
provided by the linker ([CLU], par. 3).

Obviously, the dimension of a segment associated to a library task
must be large enough to contain the stack of this task and those of
the tasks depending on it. If in the segment there is no room for the
stack of the nth task, the TASKING-ERROR exception is raised ([LRM
83], par. 9.3).

Also for each of these segments, the maximum dimension is 64 k-bytes.

As tasks handling in Ada/Digital is completely different, this
exception handling is recommended in order to easily detect the cause
of different behaviours in applications brought from VAX to Mara.

As to the code, the dimension of a single compilation unit segment
cannot exceed 32 k-bytes; see also, ([Users guide] par. 6.1.1) what
about the clusterization of the code coming from different compilation
units.

It must be taken into account that Mara Software Factory tools imply
that a program occupies a maximum of 255 memory segments, code and
data included; thus, in case of Ada programs, the segments containing
the tasks stacks must not be counted.
Finally, see ([Users guide] par. 9.6) what about the way in which the
compiler associates declarative items to different memory areas.

13.5 Shared variables.

Ada permits the use of shared variables, i.e. variables simultaneously
accessible to various tasks. Note that the variables declared in a
package body are not visible but they can be still shared by package
procedures; thus, an indirect access to them is possible by various

86

tasks.
A compiler is allowed to make the two following assumptions ([LRM 83],
par. 9.11):

if between two synchronization points a task reads a scalar or
access type shared variable, then the variable is modified by no
other task in a moment between these two points.

if between two synchronization points a task modifies a scalar or
access type shared variable, then the variable is either read or
modified by no other task in a moment between these two points.

A program violating the previous assumptions is formally wrong. May
be that its execution is correct, but it isnt any more if the compiler
or simply the optimization is changed.

In fact, their application is permitted also when shared variables are
involved; thus, a compiler can maintain their value in a register
instead of updating it continuously in memory. The only guarantee that
the compiler must provide is that the variable is actually updated
when a synchronization point is reached, and that after this point a
copy - for instance contained in a register - is not used.

No assumption can be done by a programmer on not mentioned type shared
variables handling. In particular, on FILE TYPE objects (which are
limited private), two tasks can have no consistency guarantee. In case
of sharing, a solution can be that of defining a task which - being
the only authorized one - accesses to I/O services and exports their
specification with as many tasks entries.

For a compact management of the problem, in case of SEQUENTIAL 10, the
SYNCRONIZEDSEQUENTIAL_10 package reported below can be used as a
trace; the same solution can be adopted for the generic DIRECT_10
package and for the non-generic TEXT10 one.

with sequential io; use sequential io;
with ioexceptions;

generic
type elementtype is private;

package synchronizedsequential io

procedure create (file : in out file type;
mode in file mode := out file;
name : string
form : string :=

procedure read (file : in file-type;
item : out elementtype);

private

end synchronized_sequential io;

package body synchronizedsequential io is

87

task synchronize is

entry create (file in out file-type;
mode : in filemode := outfile;
name : string
form : string

entry read (file in filetype;

item out elementtype);

end synchronize;

procedure create (file in out filetype;
mode in filemode := outfile;
name string ;
form string) is

begin
synchronize. create (file,mode,name, form);

end;

procedure read (file in file type;
item out elementtype) is

begin
synchronize.read (file, item);

end;

task body synchronize is
begin
select

accept create (file in out file type;
mode in file mode := outfile;
name string
form string)

do
sequential-iocreate (file,mode,name, form);
end;

or
accept read (file in file-type;
item out elementtype)

do
sequential io.read(file,item);
end;

or
terminate;

end select;

end synchronize;

13.6 Elaboration Order

88

The elaboration order of the library units needed by a main program,
is the one specified in ([LRM 83] par. 10.5).

About the matter it must be pointed out that no assumption can be done
on the elaboration order of two packages bodies, also when one of them
is a with of the other. For instance:

package A is
function F return INTEGER;
end A;

package B is
procedure START;
end B;

with A;
package body B is
III: INTEGER:= A.F;
procedure START is
begin

null;
end START;
end B;

In this example the elaboration order can be wrong. In similar cases,
the use of the ELABORATE pragma is recommended ([LRM 83], par. 10.5).

13.7 Tasking

It is recommended not to use the PRIORITY pragma in order to
accomplish the synchronization among tasks, and to refer to the
knowledge of scheduling mechanisms only within the limits of what is
specified
in ([LRM 83], par. 9.8).

13.8 I/O Interrupt.

The handling of Mara interrupts coming from interface modules (HIM)
must be implemented by using the mechanisms offered by the operating
system.

Thus, it is necessary to recall the primitives provided by

([Mara286_2], cap. 11) in order to:

create a virtual line

connect the line to a HIM

suspend an Ada task waiting for the generation of an interrupt
coming from that HIM

14 Inatallation Guide

89

Purpose of the chapter is to provide Digital VAX/VMS System Manager
with an installation procedure for DDC Ada 8086/80286 Compiler System
and Alenia Software Components.

The whole Ada installation kit is composed of the following products:

* DACS86 (Ada compiler and Linker)
* ADARTS (Ada run time support)
* ADABIO (Ada BASIC I/0)
* IDA (Cross Debugger)

The installation of these products implies:

* Delivery tape is down loaded
* Mara Factory has already been installed (Kernel, SCL, GENRP...)

14.1 Installation Procedure

The operation preliminary to installation are:

* To login (from system to user)
* To make sure that 30.000 memeory block are available
* To make sure that the logics (such as KER286A0, KER286A1,
GATELBA, etc) are correctly assigned;
* To make sure that hosted Intel Software Factory v. 3.2 and
following are installed
0 To make sure that version /ISIS of INTEL ASM286 and BND286
products are available;
* To create a directory for ADARTS products and associate ADARTSA0
and ADARTSA1 logics name to this area
* to create a directory for ADABIO products and associate ADABIOAO
and ADABIOAI logic names to this area
* As to IDA installation refer to [IDA286] document
* To create a directory for DACS86 products and associate DACS86AO
logic name to this area

Ada command verb can be chosen as you like provided that the first 4
letters are different from any other DCL command.

Installation procedure requires System Identification Register (SID),
obtained through function f$getsyi("sid") and relative check sums
supplied by Alenia in a letter enclosed to delivery tape.

Installation command file requires, as input parameter, a file
containing information relative to license.

The structure of License Check File (<file>.CKS) is:

<expiration date>
<serial number>
{<sid>
<check suml>
<check sum2>}

90

<blank line>
[<compiler name>]

{..) stays for iteration, while ...] stays for optionality. At
least one <sid> of a VAX machine must be indicated.

The <compiler name> field indicates the name used to indicate the
compiler tool.

The default name is PM286.
The recommanded name is ADA286.
For the installation command see the document "Installation Guide" of
the product DACS86.
The installation procedure also executes an ADA program which tests
the correcteness of the installation just performed and the
correcteness of all tools installed.

To generate the test program an Ada library and a default graph are
created.

The result of program generation is a file called HELLO.LTL.

After installation, each user must execute

@DACS86AO:ADAUSE.COM

to have compiler system available for login current session.

14.2 Installation products

The following files are produced when the installation is well
terminated:

ADA286.SCL

* ADA286.GRA
* HELLO.LTL

* MULTIi.LTL

The products list follows which must be present in any tape
configuration including DACS86.

For a consistent installation, products order in the list is
important, too.

1) LICENSE from 00.00

2) SCL286 from 04.Ox

3) GENRP from 04.Ox

4) KER286 from 04.00

5) ADARTS from 00.00

91

6) ADABIO from 00.00

7) DACS86 from 04.3x

Note: To run Installation Procedure successfully, System Manager must
be sure that Intel Software Factory version v3.2 or subsequent, is
installed in VAX/VMS (see lINT]);

15 APPENDIX i [APX A]

15.1 BASIC 10

Basic io product
generic

form : string = NODOUBLEBUFFER &
,LINE FOLDED &
,NOLINE EDIT &
,NOSHARE IN &
,NOSHAREOUT &
,NOSHAREINOUT &
,ECHO &
, TERMINATOR &
,TIMED ;

ci form : string : = SHARE-OUT &
,LINEEDIT ;

co-form : string : = NOTIMED ;
package basic-io is end;

15.2 BASIC 10 CONFIGURATION

Provide for basic io configuration at program level.
with calendar;
generic

buffer size integer;
time out calendar.day_duration;
number of files : natural;

package basic_io_configuration is end;

15.3 DEFAULT FORM

generic
value : string;
package default-form is
end;

15.4 DEFAULTDEVICES

92

generic
inputname : string;
outputname : string;
inputform : string;
output_form : string;
package defaultdevices is
end;

15.5 ADA RTS

with system;
package ADARTS is

- Tasking support issues

type computer id is range 0 .. 15;

type PSAREC is
record
Unit no :system.unsignedword;
Exceptionid :system.unsignedword;
Mara code :system.unsignedword;
Exception offset :system.unsignedword;
Exceptionselector : system. segmentid;
end record;

function MY COMPUTER return computerid;
function SET CHILD COMPUTER

(computer :7in computer id)
return computerid;

function MYSTACKSIZE return longinteger;

function SET CHILD SEGMENTSIZE
(stack size : in long_integer)

return long_integer;

-- Exception support issues

function EXCEPTION CODE return system.unsignedword;

-- Set the tracer for unhandled exception
-- as the exception handler of the current function

procedure unhandledexception tracer;

private

pragma interface (ASM86, MY COMPUTER);
pragma interfacespelling (MY_COMPUTER,"E_Computer")

pragma interface (ASM86, SET CHILD COMPUTER);
pragma interface_spelling (SET_CHILD_COMPUTER, "EChildComputer");

93

pragma interface (ASM86, MY STACK SIZE);
pragma interfaceSPELLING (MY_STACKSIZE,"EStackSize")

pragma interface (ASM86, SETCHILDSEGMENTSIZE);
p r a g m a

interface spelling(SETCHILDSEGMENTSIZE,E "_ChildSegmentSize");

pragma interface (ASM86, EXCEPTION CODE);

pragma interfacespelling (EXCEPTION CODE, "EErrorCode");

pragma interface (ASM286, TRACEINFO);

pragma interface (ASM286, GetExceptionId);
pragma interface_spelling (RTSGetExceptionId,

"RlEHGE?GetExceptionld");

pragma interface (ASM86, RTS GetExceptionSpelling);
pragma interfacespelling (RTS_GetExceptionSpelling,

"RlEHGE?GetExceptionSpelling")

end ADA RTS;

15.6 REAL TIME CLOCK

package REALTIMECLOCK is

type TIME is range 0..1000*60*60*24 - 1; -- ms in a day

procedure SETTIME (TIMEVALUE in TIME);

function GETTIME return TIME;

package TIME 10 is
procedure GET(item : out TIME);
procedure PUT(item : in TIME);
end TIME_10;

private

pragma INTERFACE (PLM86, SETTIME);
pragma INTERFACE (PLM86, GETTIME);

end REALTIME_CLOCK;

15.7 BASIC TYPES

package BASICTYPES is

This package is intended to help Ada programs to be portable respect
to the word size of target machines. Programmers should use these
types with the explicit size indication and refrain from using
INTEGER, NATURAL, POSITIVE and FLOAT standard types.

type INTEGER_16 is new INTEGER; -- for DDC

94

type INTEGER_32 is new LONGINTEGER; -- for DDC

- type INTEGER 16 is new SHORT INTEGER; -- for DEC
- type INTEGER_32 is new INTEGER; -- for DEC

subtype NATURAL 16 is INTEGER 16 range 0 INTEGER 16LAST;
subtype NATURAL_32 is INTEGER_32 range 0 INTEGER_32LAST;

subtype POSITIVE_16 is INTEGER 16 range 1 .. INTEGER 16LAST;
subtype POSITIVE-32 is INTEGER 32 range 1 INTEGER_32LAST;

type FLOAT 32 is new FLOAT; -- For DDC and DEC
type FLOAT_64 is new LONGFLOAT; -- For DDC and DEC

end BASICTYPES;

15.8 ADDRESS IMAGE

- 21 FEB 1989 12:21:00.77 /MARTIN
with-SYSTEM; use SYSTEM;
with UNCHECKED CONVERSION;
with BASIC TYPES; use BASIC:TYPES;
function ADDRESSIMAGE (V : in ADDRESS)
return STRING is

- This function is suitable for VAX targets with DEC or DDC Ada

function CONV is new UNCHECKEDCONVERSION
(SOURCE => ADDRESS,
TARGET > INTEGER 32);

begin

return INTEGER 32' IMAGE (CONV(V));

end ADDRESSIMAGE;

15.9 CALENDAR IMAGE

with CALENDAR; use CALENDAR;

package CALENDAR IMAGE is

function DATEIMAGE(T : in TIME) return STRING;

function DATEIMAGE return STRING;

function TIMEIMAGE(T : in TIME) return STRING;

function TIMEIMAGE return STRING;

end CALENDARIMAGE;

95

15.10 GZRIC DUMPS

- 1-DEC-1988 16:15:09.22 /MARTIN
with TEXT_10; use TEXT 10;
with CALENDAR; use CALENDAR;
with BASIC TYPES; use BASICTYPES;
package GENERICDUMPS is

type BOX is (UNBOXED, BOXED);

DUMP FILE : FILE TYPE;

The following procedures must be called at the start and at the end
of a test run.

procedure STARTRUN(UNIT NAME : in STRING);

procedure ENDRUN;

The following procedure allows labelling the start of the dump output
relative to a certain test. These labels can be used to facilitate
correlation between a program and the dump output it produced or
comparison between the dumps produced in different executions.

procedure START-TEST (TEST NUMBER : in POSITIVE_16;
DESCRIPTION : in STRING :-

The following procedures help the user to generate dump procedures for

his own record types.

procedure START ARRAY (NAME : in STRING; B : in BOX);

procedure STARTRECORD (NAME : in STRING; B : in BOX);

procedure ENDARRAY (B: in BOX);

procedure ENDRECORD (B : in BOX);

Basic procedure for dumping string literals

procedure DUMP (S : in STRING;
B : in BOX :- UNBOXED);

Basic procedure for dumping objects of type STRING

procedure DUMP (NAME : in STRING;
V : in STRING;
B : in BOX :- UNBOXED);

Procedure for dumping objects of type CALENDAR.TIME

96

procedure DUMP (NAME : in STRING;
V : in CALENDAR.TIME;
B : in BOX :- UNBOXED);

The following generics enable the user to generate dump procedures for
his own simple types and array types.

generic
type DISCRETE TYPE is (<>);
procedure DISCRETEDUMP (NAME : in STRING;

V : in DISCRETE TYPE;
B in BOX := UNBOXED);

generic
type FIXED TYPE is delta <>;
procedure FIXEDDUMP (NAME : in STRING;

V : in FIXED TYPE;
B : ii. BOX := UNBOXED);

generic
type FLOAT TYPE is digits <>;
procedure FLOATDUMP (NAME : in STRING;

V : in FLOATTYPE;
B : in BOX := UNBOXED);

generic
type ACCESS TYPE is private;
procedure ACCESS DUMP (NAME : in STRING;

V : in ACCESS TYPE;
B : in BOX UNBOXED);

generic
type INDEX TYPE is (<>);
type COMPONENT TYPE is private;
type ARRAY TYPE is array(INDEX TYPE) of COMPONENTTYPE;
with procedure DUMP (NARM : in STRING;

V : in COMPONENT TYPE;
B : in BOX :- UNBOXED) is <>;

procedure ARRAY DUMP (NAME : in STRING;
V : in ARRAY TYPE;
B : in BOX :Z UNBOXED);

generic
type INDEX1 TYPE is (<>);
type INDEX2 TYPE is (<>);
tpe COMPONENT type is private;
type ARRAY TYPE is array(INDEXITYPE, INDEX2_TYPE)
of COMPONENT TYPE;
with procedure DUMP (NAME : in STRING;

V : in COMPONENT TYPE;
B : in BOX :- UNBOXED) is <>;

procedure ARRAY2 DUMP (NAME : in STRING;
V : in ARRAY TYPE;
B : in BOX :Z UNBOXED);

end GENERICDUMPS;

97

15.11 BASIC DUMPS

- I-DEC-1988 16:17:04.65 /MARTIN
with BASICTYPES; use BASICTYPES;
with GENERIC DUMPS use GENERICDUMPS;
package BASICDUMPS is

These are instantiations, for the predefined types and the types
defined in package BASICTYPES, of the generic dumping procedures in
GENER! "DUMPS.

procedure DUMP is new DISCRETE DUMP
DISCRETE TYPE => INTEGER 16);

procedure DUMP is new DISCRETE DUMP
(DISCRETETYPE => INTEGER 32 T;

procedure DUMP is new DISCRETE-DUMP
(DISCRETETYPE => BOOLEAN);

procedure DUMP is new DISCRETEDUMP
(DISCRETETYPE => CHARACTER);

procedure DUMP is new FIXEDDUMP
(FIXED TYPE => DURATION);

procedure DUMP is new FLOATDUMP
(FLOATTYPE => FLOAT_32);

procedure DUMP is new FLOATDUMP
(FLOATTYPE => FLOAT_64);

end BASIC-DUMPS;

15.12 RANDOM

- 27-FEB-1989 08:32:13.50 /MARTIN
with BASIC TYPES; use BASICTYPES;
package RANDOM is

The algorithm is taken from the article:
Random number generators: good ones are hard to find
S.K. Park and K.W. Miller
Communications of the ACM, Oct 1988, Vol 31, Number 10.

The user may set SEED to any NATURAL_32 value

SEED : NATURAL_32 :- 1;

function RAND return NATURAL 32; -- 0 .. 2,147,483,647
function RAND return FLOAT_32; -- 0.0 .. 1.0

98

function RAND return INTEGER_16; -- 32768 .. 32767

end RANDOM;

15.13 DUMP 287

- Alenia
- Informatics Factory
- August 1989

Procedure to dump 287 stack top trace buffer contents. The procedure
is for use in debugging of coprocessor
algorithms written in ASM286. In particular it is used for the
debugging of the math library MATHLIB

with GENERIC DUMPS; use GENERIC-DUMPS;
procedure DUii2287 (B : in BOX := UN1OXED) is

type REFLABEL is access INTEGER_16;

function GET NREC return NATURAL_16;
pragma INTERFACE (PLM NOAC, GET NREC);
pragma INTERFACESPELLING (GET_NREC, "mathlibGETNREC");

function GET SAVED LABEL (N- in POSITIVE_16) return REFLABEL;
pragma INTERFACE-(PLM NOACF, GET SAVED LABEL);
pragma INTERFACE (GETSAVEDLABEL, "mathlib_GET_SAVED_LABEL");

function GET SAVEDST (N: in POSITIVE 16) return FLOAT_64;
pragma INTERFACE-(PLMNOACF, GET SAVED ST);
pragma INTERFACE (GET_SAVED_LABEL, "mathlibGETSAVEDST");

procedure DUMP is new ACCESS-DUMP(REFLABEL);

NREC: NATURAL_16;

begin

NREC :- GET NREC;
START ARRAY ("287/387 STACK TOP TRACES", 8);
for I in 1..NREC loop

START RECORD ("TRACERECORD", UNBOXED);
DUMP("TRACE LABEL", GET SAVEDLABEL(I));
DUMP("ST VALUE", GETSAVEDST(I));

end loop;
END ARRAY (b);

END DUMP287;

15.14 MATH LIB

99

- Alenia
- Informatics Factory
- August 1989

--This file contains the specifications of packages MATHLIB 32
--and MATHLIB 64 for use on Mara286 with MON286, MUL286, or MUL386
--boards with-or without their respective coprocessor chips.
--The body is contained in an ASM286 module called MATHLIB.

with BASIC TYPES; use BASICTYPES;
package MATHLIB_32 is

function SQRT (X : in FLOAT 32) return FLOAT_32;
function LOG (X : in FLOAT-32) return FLOAT_32;
function LOG10 (X : in FLOAT-32) return FLOAT_32;
function EXP (X in FLOAT-32) return FLOAT-32;
function Y2X (Y, X in FLOAT 32) return FLOAT_32;
function Y21 (Y in FLOAT 327;

I : in INTEGER 16) return FLOAT 32;
function SIN (X : in FLOAT_32) return FLOAT 32;
function COS (X : in FLOAT_32) return FLOAT_32;
function TAN (X : in FLOAT_32) return FLOAT_32;
function SIN SC (X : in FLOAT 32) return FLOAT 32;
function COS SC return FLOAT 32;
function ATAN2 (Y, X : in FLOAT 32) return FLOAT 32;
function ATAN (Y : in FLOAT 32) return FLOAT--32;
function ASIN (X : in FLOAT 32) return FLOAT 32;
function ACOS (X :in FLOAT 32 return FLOAT 32;
function SINH (X : in FLOAT 32) return FLOAT 32;
function COSH IX in FLOAT 32)return FLOAT 32;
function TANH (X : in FLOAT_32) return FLOAT_32;

--Out of range arguments cause exception NUMERIC-ERROR to be raised.

private

pragma INTERFACE(CREVERSE NOACF, SQRT);
pragma INTERFACESPELLING (LOG, "mathlibSQRT");

pragma INTERFACE (C REVERSE NOACF, LOG);
pragma INTERFACE SPELLING (LOG, "mathlib LOG");

pragma INTERFACE (C REVERSE NOACF, LOG10);
pragma INTERFACESPELLING(LOG10,"mathlibLOG10");

pragma INTERFACE(CREVERSE NOACF, XP);
pragma INTERFACE SPELLING(EXP, "mathlib EXP");

pragma INTERFACE (C REVERSE NOACF, Y2X);
pragma INTERFACESPELLING(Y2X, "mathlibY2X");

pragma INTERFACE(C REVERSE NOACF, Y2I);
pragma INTERFACESPELLING (Y21, "mathlibY2I");

pragma INTERFACE(C REVERSE NOACF, SIN);
pragma INTERFACESPELLING (SIN, "mathlibSIN");

100

pragma INTERFACE(C-REVERSE-NOACF, COS);
pragma INTERFACESPELLING (COS, "mathlibCOS")

pragma INTERFACE(C -REVERSE NOACF, TAN);
pragma INTERFACE-SPELLING (TAN, "mathlib TAN")

pragma INTERFACE(CREVERSE NOACF, COS SC);
pragma INTERFACESPELLING(CO0SSC, nmathlibCOSSc")

pragma INTERFACE(CREVERSE NOACF, ASIN);
pragma INTERFACESPELLING (AS IN, "mathlibASIN n);

pragma INTERFACE (C ",XVERSE-NOACF, ACOS)
pragma INTERFACESPELLING (ACOS, "mathlibACOS")

pragma INTERFACE (C REVERSE NOACF, ATAN);
pragma INTERFACESPELLING (ATAN, "mathlibATAN")

pragma INTERFACE (CREVERSE NOACE, ATAN2);
pragma INTERFACE-SPELLING (ATAN2, "mathlibATAN2")

pragma INTERFACE(C_-REVERSE -NOACF, SINH);
pragma INTERFACESPELLING (§INH, "mathlibSINH")

pragma INTERFACE (C REVERSE NOACF, COSH);
pragma INTERFACESPELLING (CdOSH, "mathlibCOSH")

pragma INTERFACE (CREVERSE-NOACF, TANH);
pragma INTERFACESPELLING (TANH, "mathlib TANH")

end MATHLIE_32;

- Alenia
- Informatics Factory
- August 1989

This file contains the specification of package MATHLIE_64 for use
on Mara286 with the Intel CEL287 library.

with BASIC TYPES; use BASICTYPES;
package MATHLIB_64 is

function SQRT (X :in FLOAT_64)return FLOAT_64;
function LOG (X :in FLOAT_64)return FLOAT_64;
function LOG10 X :in FLOAT_64)return FLOAT_64;
function EXP (X :in FLOAT 64)return FLOAT 64;
function Y2X (Y, X :in FLOAT_64) return FLOAT_64;
function Y21 (Y :in FLOAT-64;

I in INTEGER-16) return FLOAT_64;
function SIN (X :in FLOAT_64) return FLOAT 64;
function COS (X :in FLOAT_64) return FLOAT_64;
function TAN (X :in FLOAT-64) return FLOAT 64;
function SIN-SC (X :in FLOAT_64) return FLOAT_64;
function COS-SC return FLOAT_64;

101

function ATAN2 (Y, X : in FLOAT 64) return FLOAT 64;
function ATAN (Y : in FLOAT 64-) return FLOAT-64;
function ASIN (X : in FLOAT-64) return FLOAT-64;
function ACOS (X : in FLOAT-64) return FLOAT-64;
function SINH (X : in FLOAT_64) return FLOAT_64;
function COSH (X : in FLOAT-64) return FLOAT_64;
function TANH (X : in FLOAT-64) return FLOAT_64;

Out of range arguments cause exception NUMERICERROR to be raised.

private

The use of the language CREVERSE NOACF in the following INTERFACE
pragmas is to work around a bug in the code generator. This bug has
been fixed in a version not yet released.

pragma INTERFACE (CREVERSE NOACF, SQRT);
pragma INTERFACE_SPELLING (SQRT, "mathlibSQRT");

pragma INTERFACE (C REVERSE NOACF, LOG);
pragma INTERFACESPELLING(LOG, "mathlibLOG");

pragma INTERFACE(CREVERSE NOACF, LOG10);
pragma INTERFACESPELLING(LOG10, " mathlibloglO");

pragma INTERFACE (CREVERSE NOACF, EXP);
pragma INTERFACESPELLING (EXP, "mathlib EXP");

pragma INTERFACE (CREVERSE NOACF, Y2X);
pragma INTERFACESPELLING(Y2X, "mathlibY2X ");

pragma INTERFACE(CREVERSE NOACF, Y21);
pragma INTERFACESPELLING(Y21, "mathlib Y21");

pragma INTERFACE CREVERSENOACF, SIN);
pragma INTERFACESPELLING(SIN, "mathlibSIN "

pragma INTERFACE(C REVERSE NOACF, COS);
pragma INTERFACESPELLING(COS, "mathlib COS");

pragma INTERFACE(C REVERSE NOACF, TAN);
pragma INTERFACESPELLING(TAN, "mathlibTAN");

pragma INTERFACE(C REVERSE NOACF, COS SC);
pragma INTERFACESPELLING(COSSC, "mathlibCOSSC");

pragma INTERFACE(CREVERSE NOACF, SIN SC);
pragma INTERFACESPELLING (SINSC, "ma-thlibSINSC");

pragma INTERFACE (C REVERSE NOACF, ASIN);
pragma INTERFACESPELLING(ASIN, " mathlib ASIN");

pragma INTERFACE(CREVERSENOACF, ACOS);
pragma INTERFACESPELLING(ACOS, "mathlib ACOS");

pragma INTERFACE (CREVERSENOACF, ATAN);

102

pragma INTERFACE-SPELLING (ATAN, "1 mathlib ATAN")

pragma INTERFACE (CREVERSE NOACF, ATAN2);
pragma INTERFACESPELLING (ATAN2, "mathlibATAN2")

pragma INTERFACE(CREVERSE INOACF, SINH);
pragma. INTERFACESPELLING (§INH{," mathlib SINH "

pragma INTERFACE (C REVERSE -NOACF, COSH);
pragma INTERFACESPELLING(COSH, "1 mathlibCOSH "

pragma INTERFACE (CREVERSE-NOACF, TANH);
pragma INTERFACESPELLING (TANH, " mathlib TANH")

end MATH LIB 64;

16 APPENDIX B [APX B]

16.1 ADA286.GRA

system ADA286;

program template ADA286 large
code PRIVATE
data PRIVATE NODAL;
module :FMS:ADARTSA1 /RTSDATA. OBJ relocatable;
module :FMS :1DABIOkl/BIODATA. OBJ relocatable;
module ADA286 relocatable;
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :KER286A0/ADAUS .LIE relocatable;
module :FMS:ADABIOAl /BINDER.286. LIE relocatable;
module :FMS :ADARTSAl/BINDER286 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;

initial procedure cg_adamainprogram
stacksegment size = OFFOGH;

end program;
$ eject

program template MULTIADA286 large
code PRIVATE
data PRIVATE NODAL;

subprogram GENERAL repeatable;
module :FMS :ADARTSA1/RTSDATA.OBJ relocatable;
module :FMS :ADABIOA1/BIODATA.OEJ relocatable;
module ELABORATION source asm;
$ include (Repeated)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS:DACSB6AO/RTHELP286.LIB relocatable;
module :FMS :KER286AO/ADAOS .LIB relocatable;

103

module :FMS :ADABIOAl/BINDE.286 .LIE relocatable;
module :FMS :ADARTSAl/BINDER286 .LIB relocatable;
module :FMS :KER286A0/ADAUS.LIE relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE 0 optonal;
$include (Zone0)-
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS:DACS86AO/RTHELP286.LIE relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module :FMS :ADABIQAl/BINDER286 .LIB relocatable;
module :FMS :ADARTSAl/BINDER286 .LIB relocatable;
module :FMS :KER2B6AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_1 optional;
Sinclude (Zonel)-
module :FMS:DACSB 6A0 /ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELp28E .LIE relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module :FMS :ADABIOA1/BINDER&a6 .LIB relocatable;
module :FMS :ADARTSMl/BINDER286 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE 2 optional;
$include (Zone2)-
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;
module :FMS :ADAEIOA4/EINDER286 .LIB relocatable;
module :FMS :ADARTSA/INDER286.LIB relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE 3 optional;
$include (Zone3)-
module :FMS :DACS86AO/ROOT.LIE relocatable;
module :FMS :DACS86A0/RTHELP286 .LIE relocatable;
module :FMS :KER286AD/ADAUS .LIB relocatable;
module :FMS :ADABIOAl/INDER.286 .LIB relocatable;
module :.FMS :ADARTSA1./BINDER286 .LIB relocatable;
module :FMS:KER286AO/ADAUS.LIE relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_4 optional;
$include (Zone4)
module :FMS:DACS8 6A0/ROOT.LIE relocatable;
module :FMS :DACS86AO/RTHELP286 .LIE relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;
module :FMS :ADAEIOAl/BINDER286.LIE relocatable;

104

module :FMS:ADARTSAI./BINDER2 86. LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE -5 optional;
$ include (Zone5)
module :FMS :DACS86AO/ROOT .LIB relocatable;
module :FMS :DACS86AO/RTHELP2B6 .LIB relocatable;
module :FMS:KER2 8 AO /ADAUS.LIE relocatable;
module :FMS :AD1BIOAI/BINDER286 .LIB relocatable;
module :FMS :ADARTSA1/EINDER286 .LIB relocatable;
module :Fms :KER2B6iAO/ADAus .LIE relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_6 optional;
$include (Zone6)-
module :FMS :DACS8 GAO/ROOT .LIE relocatable;
module :FMS:DACS8GAO/RTHELP2S6 .LIB relocatable;
module :FMS :KER28GiAO/ADAUS.LIB relocatable;
module :FMS :ADABIOkl/BINDER2B6 .LIE relocatable;
module :FMS :ADAPTSAl/BINDER286.LIB relocatable;
module :FMS :KER2B6AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE 7 optional;
$include (Zone7)-
module :FMS :DACS86AO/ROOT.LIS relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :KER286AO/ADAUS.LIB relocatable;
module :FMS :ADABIOAl/BINDER2B6 .LIB relocatable;
module : FMS :ADARTSAI/BINDER28 6. LIE relocatable;
module :FMS :KER2B6AO/ADAUS .LEB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_8 optional;
$include (Zone8)-
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module :FMS :ADAEIOA1/BINDER286 .LIE relocatable;
module :FMS :ADARTSAl/BINDER286.LIB relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE 9 optional;
$ include (Zone9)-
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIE relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module :FMS :ADABIOA1/BINDER286.LIE relocatable;
module :FMS :ADARTSA1/BINDER286 .LIB relocatable;

105

module :FMS :KER286AO/ADAUS .LIE relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE_10 optional;
$include (ZonelO)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS8GAO/RTHELP286 .LIB relocatable;
module :FMS: KER2B86AO /ADAUS. LIB relocatable;
module :FMS:ADABIQAl /BINDER2 86. LIE relocatable;
module :FMS :ADARTsA1/BINDER286 .LIB relocatable;
module :FMS :KER286A0/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONET11 optional;
$include (Zonell)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DASCS86AO/RTHELP2B6 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module :FMS :ADABIOAl/BINDER286 .LIB relocatable;
module :EMS:ADARTSA1 /BINDER2 86. LIE relocatable;
module :FMS :KER2B6AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE 12 optional;
$include (Zonel2)
module :FMS:DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module :FMS :ADAEIOA1/EINDER286 .LIE relocatable;
module EFMS:ADARTSA1 /BINDER2 86. LIE relocatable;
module :FMS :KER286AO/ADAUS .LIB relocatable;
module GATELBA relocatable;
end subprogram;

subprogram ZONE 13 optional;
$include (Zonel3T'
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :FMS :DACS86AO/RTHELP286 .LIB relocatable;
module E.MS:KER2 86A0 /ADAUS .LIE relocatable;
module :FMS :ADABIOAI/BINDER286 .LIE relocatable;
module :FMS :ADAPTSAl/BINDER26 .LIB relocatable;
module :FMS :KER286AO/ADAUS.LIB relocatable;
module GATELBA
end subprogram;

subprogram ZONE 14 optional;
$include (Zonel4)
module :FMS :DACS86AO/ROOT.LIB relocatable;
module :EMS :DACS86AO/RTHELP286 .LIE relocatable;
module :FMS :KER286A0/ADAUS .LIE relocatable;
module :FMS :ADABIOA1/EINDER286 .LIE relocatable;
module :EMS :ADARTSAl/BINDER286 .LIE relocatable;
module :FMS :KER286AO/ADAUS .LIE relocatable;

106

module GATELBA relocatable;
end subprogram;

subprogram ZONE 15 optional;
$include (Zonel5T
module :FMS :DACS86A0/ROOT.LIB relocatable;
module :FMS :DACS86A0/RTHELP286 .LIB relocatable;
module :FMS :KER286AO/ADAUS.LIB relocatable;
module :FMS :ADABIOAl/BINDER286.LIB relocatable;
module :FMS :ADARTSAl/BINDER286 .LIB relocatable;
module :FMS :KER286AO/ADAUS.LIB relocatable;
module GATELBA relocatable;
end subprogram;

initial procedure cg_adamainprogram
stacksegment nodal size = OffOOh;

end program;

hardware configuration;

volume DEFAULTVOLUME,
presence NODAL origin FIRST NODAL PAGE,
LOCAL to 0 origin FIRST LOCAL PAGE,
LOCAL to 1 origin FIRST-LOCALPAGE,
LOCAL to 2 origin FIRST-LOCAL-PAGE,
LOCAL to 3 origin FIRST-LOCALPAGE,
LOCAL to 4 origin FIRST LOCAL PAGE,
LOCAL to 5 origin FIRST LOCAL-PAGE,
LOCAL to 6 origin FIRST-LOCALPAGE,
LOCAL to 7 origin FIRST LOCAL PAGE,
LOCAL to 8 origin FIRST LOCAL PAGE,
LOCAL to 9 origin FIRST LOCAL PAGE,
LOCAL to 10 origin FIRSTLOCAL PAGE,
LOCAL to 11 origin FIRST LOCAL PAGE,
LOCAL to 12 origin FIRST LOCAL PAGE,
LOCAL to 13 origin FIRST LOCAL PAGE,
LOCAL to 14 origin FIRST LOCAL PAGE,
LOCAL to 15 origin FIRST_LOCALPAGE;
end configuration;

include ADA286 local to 0;
initial process on 0 priority 2;

include MULTI ADA286;
$include (SubprogramAssign)
initial process on 0 priority 2;

end system;

16.2 RZFERENCZS

[LRM 83] Reference Manual For the Ada

107

Programming Language.
ANSI/MIL-STD 1815 A
January 1983

[User Guide] DDC-I Ada 8086/80286 Compiler System
User Guide for DACS-80x86
May 31, 1989
DDC-I 5801/RPT/62, issue 12

[DDC3 86] DDC-I Ada Compiler System
alias [CLU] Clusterization Variant of

the DACS-80286PM Linker
May 31, 1989
DDC-I 5169/RPT/17, issue 1

[MATH] Mathematics Library for Ada on Mara
User Manual
rev 1.0

[DUMPS] Ada Dumps
User Manual
rev 1.2

[ADAMAP] ADA MAPPER User Guide

[IDA286] IDA286 User Guide

[GRP) GENRP (MARA286 monograph)

[SCL] SCL286 (MARA286 monograph)

[SELl 87] MARA-286 An Overiew of the
Software Factory
September 1987

[SEL2 87] MARA-286 An Overiew of the
Operating System
September 1987

[SEL3 87] Ada Multi Processor Program Generation
November 1989

[SEL4 89] DDC Ada 80286 Compiler System.
Addendum to Appendix F.
Supports to MARA Architecture
May 5, 1989

[Alenia Software Basic Softare Delivery
Products] Document

[MARA286_1 87] MARA286 Computer Monograph
- Volume 1

[MARA286_2 87] MARA286 Computer Monograph
- Volume 2

108

[MAPAL286_3 87] MARA286 Computer Monograph
- Volume 3

EMARA286_4 87] MARA286 Computer Monograph
- Volume 4

109

